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Abstract
We prove the stability under integration and under Fourier transform of a concrete
class of functions containing all globally subanalytic functions and their complex
exponentials. This article extends the investigation started by Lion and Rolin and
Cluckers and Miller to an enriched framework including oscillatory functions. It pro-
vides a new example of fruitful interaction between analysis and singularity theory.
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1. Introduction
In this article we prove the stability under parameterized integration of a class of func-
tions containing all globally subanalytic functions and their complex exponentials,
with methods pertaining to subanalytic geometry. Note that the theories of holonomic
D-modules and holonomic distributions (and, further away, of `-adic cohomology
and of motivic integration) have the richness of combining geometry with Fourier
transforms, and these theories all have found far-reaching applications. Applications
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of our setting are to be expected, but are not the content of the present article. Let
us just mention that, in the context of motivic and p-adic integration (see [7]), sim-
ilar stability results have found recent applications in the Langlands program (see
[5], [6]). The stability under integration of certain classes of real functions has already
been considered in [8], [10], [21], and [16], but none of these classes allows oscilla-
tory behavior, let alone stability under Fourier transforms. Let us explain our results
in detail.

Definition 1.1
A set X � Rm is globally subanalytic if, in any standard Euclidean chart Rm of
Pm.R/, the image of X in Pm.R/ is a subanalytic subset of this chart in the sense
of [3] and [11]. Equivalently, X �Rm is globally subanalytic if it is the image under
the canonical projection from RmCn to Rm of a globally semianalytic subset of RmCn

(i.e., a set Y � RmCn such that, in a neighborhood of every point of P1.R/mCn, Y
is described by a finite number of analytic equations and inequalities). Given a set
X �Rm, a map f WX!Rn is globally subanalytic if its graph is a globally subana-
lytic subset of RmCn. (This definition implies that X is a globally subanalytic subset
of Rm, since the collection of globally subanalytic sets is closed under projections.)

In model-theoretic terms, a set is globally subanalytic if and only if it is definable
in the structure Ran, the expansion of the ordered real field by all restricted analytic
functions (as defined in [31]). By [12], [28], and [29], this is an o-minimal structure,
and therefore, the reader may refer, for instance, to [30] and [32] for the basic geo-
metric properties of globally subanalytic sets and functions that we will use in the rest
of this article.

For the sake of brevity, from now on we will use the word “subanalytic” as an
abbreviation for the phrase “globally subanalytic.” So in this usage of the word, the
natural logarithm log W .0;C1/! R and the trigonometric functions sin W R! R

and cos W R! R are not subanalytic, although the restriction of any one of these
functions to any compact subinterval of its domain is subanalytic.

Given a subanalytic set X � Rm, we denote by S.X/ the algebra of all real-
valued subanalytic functions on X , and we write

S WD
®
S.X/ Wm 2N;X �Rm subanalytic

¯
for the system of all real-valued subanalytic functions.

Our aim is to provide a full description of the smallest system

E WD
®
E.X/ Wm 2N;X �Rm subanalytic

¯
such that E.X/ is a C-algebra of complex-valued functions on X �Rm satisfying
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S.X/[
®
eif W f 2 S.X/

¯
� E.X/ (1)

and such that E is stable under integration.
Here stability under integration for E means that if X �Rm is a subanalytic set,

n 2 N, and f 2 E.X � Rn/ is such that f .x; �/ 2 L1.Rn/ for all x 2 X , then the
function F W X!C defined by

F.x/D

Z
y2Rn

f .x;y/dy for x 2X; (2)

is in E.X/.
Note that the existence of E is guaranteed by the fact that the collection on the

left-hand side of (1) is contained in the class of all complex-valued measurable func-
tions, a class stable under parameterized integration. We will describe in detail the
system E in the next section. Our main result is that E coincides with the system C exp

of C-algebras C exp.X/ defined in Definition 2.7 (see Remark 2.14(1)), for which we
have an explicit description of the generators (Definition 2.15). It is worth noting that
the generators of the algebra E.X/ are defined in terms of one-variable integrals of a
particularly simple form (see Definition 2.5).

A strong motivation to allow oscillatory functions in our system comes from sin-
gularity theory, where oscillatory integrals have been heavily investigated for decades
(for an introduction, and among numerous other references, see in particular [2],
[23], [33]). A series of preparation and monomialization results (see [8], [9], [20],
[24], [25]) for subanalytic functions and their logarithms provides a powerful tool for
studying the nature of oscillatory integrals with subanalytic phase and amplitude.

As indicated in [21, Introduction], the idea of using a preparation theorem to
understand the integration of subanalytic functions was suggested by L. van den
Dries and, indeed, was successfully used in [21] and [10], where it was proved (using
[21, Théorème 1] and [10, Proposition 1], or directly as [10, Theorem 10]) that the
parameterized integrals of subanalytic functions belong to the class C WD .C.X//X
of constructible functions. (The algebra C.X/ of functions on the subanalytic setX is
generated as a C-algebra by the subanalytic functions on X and their logarithm (see
Definition 2.1).) In particular, the function volume of fibers of a subanalytic family
and the density function along a subanalytic set also belong to the class C (see [10]).

The question of finding a system of C-algebras of functions that contains S and
that is stable under parameterized integration has been attacked and solved in [8] (see
also [9]), where the authors showed that the class C itself is stable under parame-
terized integration (see [16] for an interesting subcollection of C , also stable under
integration). Here again the main tool of proof is a preparation theorem for functions
of C . Note that the class C is a class of functions definable in the o-minimal structure
Ran,exp, the expansion of Ran by the full real exponential function.
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As already mentioned, the problem we address and solve here is the problem
of explicitly describing a system of C-algebras (actually the smallest), stable under
parameterized integration, containing S and containing the complex-valued oscilla-
tory functions eif , for all subanalytic functions f . Since we consider oscillatory func-
tions, we are no longer in an o-minimal setting. However, the preparation results men-
tioned above (see Section 3) prove extremely useful and powerful even for dealing
with oscillatory functions. To prove our results, we combine these preparation tech-
niques with the theory of continuously uniformly distributed maps (see Section 6), a
new ingredient in this context.

Oscillatory integrals are central in many branches of mathematics and physics.
Following Stein [27], an oscillatory integral of the first kind is a parameterized integral
I.x/, x 2R, defined by

I.x/D

Z
y2Rn

f .y/eixˆ.y/ dy; (3)

where the amplitude f and the phase ˆ are in general C1-functions. The principle
of stationary phase asserts, when the phase ˆ has no critical point on the support of
f (assume for simplicity that f has compact support), that x 7! I.x/ is in S .R/, the
Schwartz space of rapidly decreasing functions. As a consequence, the asymptotic
behavior of I.x/ atC1, modulo S .R/, presents some interest only at critical points
of the phase. If the phase is analytic, then one can show that this asymptotic behavior
only depends on the Taylor series of the amplitude function at critical points of the
phase and that I.x/ can be expanded in an asymptotic series

X
p

x�p=r
n�1X
kD0

cp;k logk.x/;

where r is a positive integer not depending on f and p is an element of N n ¹0º (see
[23, Section 7], [2, Chapter 7]). Using Hironaka’s resolution of singularities on the
phase function, one can prove this result by reducing to the case of a monomial phase.
The exponents �p=r and k are related to the monodromy of the phase, in case the
phase has an isolated singular point in the complex domain: e2� i.pr �1/ is actually an
eigenvalue of multiplicity at least kC 1 of the monodromy operator of the phase (see
[23] for more details). Furthermore, the principal part of the exponents �p=r , called
the oscillation index (see [2, Section 6.1.9]), can be computed in terms of Newton’s
diagram of the Taylor expansion of the phase at its critical point (see [2], [33]).

Similarly, in this article, we estimate and compare the asymptotics at infinity
of different terms appearing in our parameterized integrals, namely, integrals as in
(2), and in this situation the preparation theorem for constructible functions (Proposi-
tion 3.10) appears as the counterpart of Hironaka’s theorem. Of course, in our general
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context, no geometric interpretation for exponents appearing in the asymptotics con-
sidered can be given, but there might be connections with the classical cases still to
be discovered.

An oscillatory integral of the second kind has the form

I.x/D

Z
y2Rn

f .x;y/eiˆ.x;y/ dy; (4)

where now x D .x1; : : : ; xm/ is a tuple of variables. A classical example of an oscil-
latory integral of the second kind is given by Fourier transforms. A second more
complicated example is given by the Fourier integral operator (see [14], [27]), which
plays a role in approximating the solutions of a large class of PDEs (e.g., the wave
equation). A natural question arises: how does one describe the nature of (4) accord-
ing to the nature of the amplitude and of the phase?

Note that in (4) the parameters x are “intertwined” with the integration variables
y in the expressions for the amplitude f and the phase ˆ. If we consider oscillatory
integrals of the second kind with subanalytic amplitude and phase, then the aforemen-
tioned preparation results prove a very powerful tool for monomializing the phase
while respecting the different nature of the variables x and y.

The main result of this article (Theorem 2.12) implies that oscillatory integrals
(of the first and second kinds) with subanalytic phase and amplitude belong to the
system E . Moreover, still by the stability of E under integration, oscillatory integrals
with subanalytic phase and amplitude in E still belong to E .

In particular, for X � Rm subanalytic, the algebra E.X � R/ is stable under
taking parametric Fourier transforms:

if f .x; t/ 2 E.X �R/ and 8x 2X;f .x; �/ 2L1.R/;

then Of .x;y/D
Z
R

f .x; t/e�2� iyt dt 2 E.X �R/:
(5)

On the other hand, E can also be viewed as the smallest system of C-algebras
that contains the class C of constructible functions and is stable under composition
with subanalytic functions and parametric Fourier transforms (see Remark 2.14(3)).
Since there are not many systems (of algebras) of functions which are stable under
Fourier transforms, we would like to insist in this Introduction on the fact that E is
such a system, which is moreover fully described by its generators.

Like E.Rn/, the space of Schwartz functions S .Rn/ is also an algebra that is
stable under taking Fourier transforms. Since the Fourier transform operator

F W
�
S .Rn/;k � k2

�
!
�
S .Rn/;k � k2

�
is continuous, using the density of S .R2/ in the space L2.Rn/, one can extend
F W S .Rn/!S .Rn/ to
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eF W L2.Rn/!L2.Rn/: (6)

One thus obtains the classical stability ofL2.Rn/ under the Fourier–Plancherel exten-
sion eF of the Fourier transform F . In Section 7 we prove that E is even stable under
the extension eF of the Fourier transform: the image of E.Rn/ \ L2.Rn/ under eF
is E.Rn/\L2.Rn/ (see Theorem 8.3). To this end, we need to develop in Section 8
elements of a theory of uniformly distributed families of maps.

Let us also mention that, since the function e�jxj is in E.R/ (see Example 7.4),
one may interpolate families of exponential periods with functions from E . More pre-
cisely, by following [4] and [17, Section 4.3], a real number a is called an exponential
period if there exist �� Rn (for some n 2 N) and functions f;g W �! R such that
�, f , and g are semialgebraic over Q (i.e., they are described by first-order formulas
in the language of ordered rings with no other constant symbols than rational num-
bers) and

aD

Z
y2�

f .y/eg.y/ dy:

A natural version in families of this concept is the following. Let X � Rm, let � �
X �Rn, and let f;g W �!R be semialgebraic over Q. Suppose that, for each x 2X ,

a.x/D

Z
y2�x

fx.y/e
gx.y/ dy

is finite, where �x D ¹y 2Rn W .x; y/ 2�º, fx.y/D f .x;y/, and gx.y/D g.x;y/.
Then the collection ¹a.x/ W x 2X \Qmº forms a natural family of exponential peri-
ods. Suppose that there is a constant N such that g < N on �. It then follows from
the stability under the integration of E (see Theorem 2.12) and Example 7.4 that the
interpolating function R 3 x 7! a.x/ 2R belongs to E.X/.

Finally, the work in this article can be seen as addressing a question raised by
D. Kazhdan at the 2009 Model Theory Conference, about a possible model-theoretic
understanding of real oscillatory integrals, an analogy to the understanding of motivic
oscillatory integrals in [7] and [15].

2. Notation, main results, and layout of this article
This section states the main definitions, theorems, and corollaries of the article. We
proceed to construct E by first defining some systems of rings of functions interme-
diary between S and E .

Definition 2.1
For each subanalytic set X �Rm, define C.X/ to be the ring of real-valued functions
on X generated by
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S.X/[
®
logf .x/ W f 2 S.X/;f > 0

¯
:

We call C.X/ the ring of constructible functions on X , and we say that a function is
constructible if it has a subanalytic domain X and is a member of C.X/. Write

C WD
�
C.X/

�
X is subanalytic

for the system of all constructible functions. Thus, f 2 C.X/ if and only if f can be
expressed as a finite sum of finite products of the form

f .x/D
X
j

fj .x/
Y
k

logfj;k.x/ (7)

with fj ; fj;k 2 S.X/ and fj;k > 0.

It is easy to see that any constructible function can be defined as a parameter-
ized integral of a subanalytic function, and it was shown in [8, Theorem 1.3] that the
constructible functions are stable under integration. Therefore, the constructible func-
tions form the smallest class of functions defined on the subanalytic sets that is stable
under integration and that contains all subanalytic functions.

It follows that

C.X/[
®
eif .x/ W f 2 S.X/

¯
� E.X/

for each subanalytic set X . This leads us to the following definition.

Definition 2.2
For each subanalytic set X � Rm, define C

exp
naive.X/ to be the ring of functions on X

generated by

C.X/[
®
eif .x/ W f 2 S.X/

¯
:

Write

C
exp
naive WD

�
C

exp
naive.X/

�
X is subanalytic:

Thus, f 2 C
exp
naive.X/ if and only if f can be written as a finite sum

f .x/D

JX
jD1

fj .x/e
i�j .x/; with fj 2 C.X/ and �j 2 S.X/:

The elements of C
exp
naive.X/ are complex-valued functions. Hence, it is convenient to

give the following definition.
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Definition 2.3
If f W X ! C is such that its real and imaginary components are in S.X/ (resp., in
C.X/), then we call f a complex-valued subanalytic (resp., constructible) function.
Note that if �.x/ is a bounded subanalytic function, then ei�.x/ is a complex-valued
subanalytic function.

Remark 2.4
We will see in Section 7 that the elements of C

exp
naive.Œ0;C1// have certain convergent

asymptotic expansions at C1. This implies that there are no Schwartz functions in
C

exp
naive.Œ0;C1//. In particular, the function f .x/ D e�x is not in C

exp
naive.Œ0;C1//,

while it can be easily shown that f 2 E.Œ0;C1//. Now consider the function Si.x/DR x
0

sin.t/
t

dt , which is clearly in E.Œ0;C1//. However, Si.x/ is easily seen to have a
divergent asymptotic expansion at C1; therefore, Si cannot be in C

exp
naive.Œ0;C1//.

(The details of the proof of this remark will be carried out in Section 7.)

This example suggests that, to construct E , we cannot avoid including functions
computable from single-variable integrals. Our main claim is that we will only need
to consider single-variable integrals of the following special form.

Definition 2.5
For each ` 2 N, subanalytic set X � Rm, and h 2 S.X �R/ such that 8x 2X , t 7!
h.x; t/ 2L1.R/, define �h;` W X!C by

�h;`.x/D

Z
R

h.x; t/
�
log jt j

�`
eit dt:

This definition makes sense, because for each x 2X , requiring that t 7! h.x; t/ is
inL1.R/ is equivalent to requiring that t 7! h.x; t/.log jt j/` is inL1.R/. This is easily
justified using elementary calculus and expanding t 7! h.x; t/ as in Remark 3.1.

Remark 2.6
If g 2 S.X/, then sometimes it will be convenient to see g as a function of type
�h;`. To see this, take `D 0 and h.x; t/D 1

2
g.x/�.t/, where �.t/ is the characteristic

function of the interval Œ��
2
; �
2
�. In particular, the constant function 1 can be viewed

as a function of type �h;` (and for the rest of this article we will implicitly assume so).

Note that, for x 2X , �h;`.x/D
R
R
eh.x; t/dt , where eh.x; t/D h.x; t/.log jt j/`eit

if t ¤ 0 andeh.x; 0/D 0. Sinceeh 2 C
exp
naive.X �R/ and C

exp
naive.X �R/� E.X �R/, we

must have �h;` 2 E.X/. This leads us to the following definition.
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Definition 2.7
For each subanalytic set X � Rm, define C exp.X/ to be the C

exp
naive.X/-module of

functions on X generated by®
�h;` W ` 2N and h 2 S.X �R/ with t 7! h.x; t/ in L1.R/

¯
:

We write

C exp WD
�
C exp.X/

�
X is subanalytic:

Thus, f 2 C exp.X/ if and only if f can be written as a finite sum

f .x/D

JX
jD1

fj .x/�hj ;`j .x/; with fj 2 C
exp
naive.X/; hj 2 S.X �R/; and `j 2N;

where 8x 2X; t 7! hj .x; t/ 2L
1.R/ for each j .

Remark 2.8
Note that C exp is stable under composition with subanalytic functions in the following
sense: if X �Rm and Y �Rn are subanalytic sets, G W Y !X is a subanalytic map,
and f 2 C exp.X/, then f ıG 2 C exp.Y /.

For each subanalytic set X � Rm, it is clear that C exp.X/ � E.X/. Hence, our
next task is to study the parametric integrals of functions f 2 C exp.X �Rn/.

Notation 2.9
Write .x; y/D .x1; : : : ; xm; y1; : : : ; yn/ for the standard coordinates on RmCn. Define
…m W R

mCn!Rm by …m.x; y/D x. For each set D �RmCn, define the fiber of D
over x by

Dx D
®
y 2Rn W .x; y/ 2D

¯
:

Definition 2.10
For any Lebesgue measurable function f W D! C with D � RmCn and …m.D/D

X , define the locus of integrability of f over X by

Int.f;X/ WD
®
x 2X W f .x; �/ 2L1.Dx/

¯
:

Remark 2.11
Let f 2 C exp.X � Rn/, and suppose that f .x; �/ 2 L1.Rn/ for all x 2 X . To com-
pute F.x/D

R
y2Rn

f .x;y/dy, one typically works by induction on n, using Fubini’s
theorem to express it as an iterated integral
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Rn�1

�Z
R

f .x;y1; : : : ; yn�1; yn/dyn
�

dy1 ^ � � � ^ dyn�1:

But then one is confronted with the fact that

.x; y1; : : : ; yn�1/ 7�!

Z
R

f .x;y1; : : : ; yn�1; yn/dyn (8)

might not be defined on all of X � Rn�1; all we know is that (8) is defined for all
x 2X and almost all .y1; : : : ; yn�1/ 2 Rn�1. So in order to have a stable framework
that considers (8) to be a “parameterized integral” as well, it is useful to consider the
more general situation from the start where one drops the assumption that f .x;y/ is
integrable in y for all x 2X , but one then additionally studies the locus of integrabil-
ity of f over X (see Theorem 2.20).

We are now ready to state the main result of this article.

THEOREM 2.12 (Stability under integration)
Let f 2 C exp.X �Rn/ for some subanalytic set X �Rm and n 2N. Then there exists
F 2 C exp.X/ such that

F.x/D

Z
Rn

f .x;y/dy for all x 2 Int.f;X/:

It is clear from the definition that the module C exp.X/ is closed under addition,
but it is not so apparent from the definition alone whether C exp.X/ is closed under
multiplication. That C exp.X/ is a ring is in fact a consequence of our main result.

COROLLARY 2.13
For each subanalytic set X , C exp.X/ is a ring.

Proof
For any n 2N and functions �h1;`1 ; : : : ; �hn;`n , writing y D .y1; : : : ; yn/ we have

nY
jD1

�hj ;`j .x/D

nY
jD1

�Z
R

h.x;yj /
�
log jyj j

�`j eiyj dyj
�

D

Z
Rn

� nY
jD1

h.x;yj /
�
log jyj j

�`j eiyj
�

dy;

which is in C exp.X/ by Theorem 2.12. It follows that C exp.X/ is closed under multi-
plication.
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Remarks 2.14
(1) Theorem 2.12 and Corollary 2.13 imply that C exp is indeed the smallest col-

lection of C-algebras that contains S [ ¹eif W f 2 Sº and that is stable under
parametric integration. Hence, C exp D E .

(2) Note that C exp is closed under complex conjugation; hence, the real and imagi-
nary parts of functions in C exp are also in C exp. Moreover, C exp is closed under
taking Fourier transforms (over Rm and over R with parameters, as in (5)).

(3) The ring C exp.X/ can also be described as the smallest C-algebra A.X/ con-
taining C.X/ that is also stable by composition with subanalytic functions
(the operation defined in Remark 2.8, where we take n D m) and by tak-
ing parametric Fourier transforms (the operation defined in (5)). To see this,
note that Remark 2.8 and item (2) immediately above together imply that
A.X/ � C exp.X/. To prove the other inclusion, note first that a function of
type �h;` (as in Definition 2.5) is a parametric Fourier transform of a function
in C.X/. To see this, note that the parametric Fourier transform of the function
t 7! h.x; t/.log t /` is the function

F.x;y/D

Z
R

h.x; t/.log t /`e�2� ity dt

and we have �h;`.x/D F.x;�
1
2�
/, where evaluating F at the points .x;� 1

2�
/

is allowed, thanks to the stability by composition with subanalytic functions.
Moreover, the function .x1; : : : ; xm/ 7! eix1 belongs to A.X/, since the func-
tions sinx1

x1
and cosx1

x1
are Fourier transforms of the characteristic function of

a suitable interval (see, e.g., [13]). Finally, by the stability under composition
with subanalytic functions, if ' 2 S.X/, then ei'.x/ 2A.X/.

We now illustrate the main steps of the proof of Theorem 2.12.

Definition 2.15
Consider a subanalytic set X . Call f W X!C a generator for C exp.X/ if f is of the
form

f .x/D g.x/ei�.x/�.x/; (9)

where g 2 C.X/, � 2 S.X/, and � D �h;` for some ` 2 N and h 2 S.X � R/ with
t 7! h.x; t/ in L1.R/. When � D 1, we will also call f a generator for C

exp
naive.X/.

Note that a function is in C exp.X/ if and only if the function can be expressed as a
finite sum of generators for C exp.X/, and likewise for C

exp
naive.X/.

Remark 2.16
The function f given in (9) is determined by the data .g;�;h; `/. However, the
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choice of underlying data is not uniquely determined by the function f itself (see
Remark 2.6). In what follows, we will always assume that, when we have a generator
f , a choice of underlying data has been specified.

The purpose of the next two definitions is to identify a particular type of generator
for C exp.X�Rn/which is integrable everywhere and whose integral can be computed
using the Fubini–Tonelli theorem.

Definition 2.17
To the function (9) we associate the function f abs W X! Œ0;C1/ defined by

f abs.x/ WD
ˇ̌
g.x/

ˇ̌
� abs.x/;

where � abs W X! Œ0;C1/ is defined by

� abs.x/D

Z
R

ˇ̌
h.x; t/

�
log jt j

�` ˇ̌
dt:

For f as in (9), note that for any x 2 X we have j�.x/j � � abs.x/, so jf .x/j �
f abs.x/, and these inequalities can be strict. Observe that, for any given generator f
for C exp.X/, f abs is uniquely determined by the underlying data used to define f as
in (9), not by the function f itself.

Definition 2.18
We say that a generator f for C exp.X �Rn/ is superintegrable over X if f abs.x; �/ 2

L1.Rn/ for all x 2X .

In Section 4 we will prove the following result.

PROPOSITION 2.19 (Integration of superintegrable generators)
Let f be a generator for C exp.X � Rn/ that is superintegrable over X , and define
F W X!C by

F.x/D

Z
Rn

f .x;y/dy:

Then F 2 C exp.X/.

The key step to the proof of Theorem 2.12 is given by the following interpolation
result, which holds whenever we integrate with respect to a single variable y 2 R.
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This result also gives a structure theorem for the locus of integrability of functions in
C exp.X �R/.

THEOREM 2.20 (Interpolation and locus)
Let f 2 C exp.X � R/ for some subanalytic set X � Rm. Then there exists g 2
C exp.X �R/ such that

Int.g;X/DX

and

f .x;y/D g.x;y/ for all x 2 Int.f;X/ and all y 2R:

Moreover, g can be written as a finite sum of generators for C exp.X � R/ that are
superintegrable over X . Finally, there exists h 2 C exp.X/ such that

Int.f;X/D
®
x 2X W h.x/D 0

¯
:

Once we have established Theorem 2.20, the proof of Theorem 2.12 follows eas-
ily. The case nD 1 is implied by Theorem 2.20 and Proposition 2.19. For n > 1 we
will use Fubini’s theorem and induction on the number of variables with respect to
which we integrate, as explained below.

Notation 2.21
Write .x; y/ D .x1; : : : ; xm; y1; : : : ; yn/ for coordinates on RmCn. For each k 2

¹1; : : : ; nº and � 2 ¹<;>;�;�º, write y�k for .yj /j�k . For example, y<k D
.y1; : : : ; yk�1/ and y�k D .y1; : : : ; yk/, and also …k.y/D y�k and …mCk.x; y/D

.x; y�k/.

Proof of Theorem 2.12
If nD 1, then by Theorem 2.20 there exists g 2 C exp.X �R/ such that

f .x;y/D g.x;y/ for all x 2 Int.f;X/ and all y 2R:

Moreover, g is a finite sum of superintegrable generators. The sum of their integrals
belongs to C exp.X/, thanks to Proposition 2.19, and gives us the required F .

Let n > 1. By Fubini’s theorem, for all x 2 Int.f;X/, the function gx W y<n 7!R
R
f .x;y/dyn is defined for all y<n belonging to some set Ex � Rn�1 such that

the set Rn�1 nEx has measure zero. Moreover, gx is integrable with respect to y<n,
and

R
Rn
f .x;y/dy D

R
Ex
gx.y<n/dy<n. If we apply the case nD 1 just proved to

the function f seen as an element of C exp.eX � R/, where eX D X � Rn�1, then we
obtain the existence of F1 2 C exp.eX/ such that, 8.x; y<n/ 2 Int.f; eX/, F1.x; y<n/D
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R
f .x;y/dyn. So, in particular,Z

Rn�1

F1.x; y<n/dy<n D
Z
Ex

gx.y<n/dy<n

for all x 2 Int.f;X/. By the inductive hypothesis applied to F1, we obtain the exis-
tence of F 2 C exp.X/ such that, 8x 2 Int.F1;X/, F.x/ D

R
Rn�1

F1.x; y<n/dy<n.
Note that this argument shows that Int.f;X/� Int.F1;X/; hence, we are done.

The structure of the article is the following. In Section 3, we establish some nota-
tion and we review a series of known results about subanalytic and constructible
functions. Such results are mainly due to [8], [20], and [9]. In Section 4 we prove
Proposition 2.19.

Section 5 is the core of the article. In this section we prove a preparation theorem
for functions in C exp.X �R/, namely, Theorem 5.2. This states that for each f there
is a partition of X �R into finitely many subanalytic sets such that, on each of these
sets, f can be written as a finite sum of generators, each of which is either superin-
tegrable or “naive in the last variable” (see Definition 5.1). As a consequence of the
proof of this theorem we obtain that the functions in C exp are piecewise analytic (see
Remark 5.8).

In Section 6 we complete the proof of Theorem 2.20. In order to do this, we
apply Theorem 5.2. Subsequently, we show that any nonzero linear combination of
nonintegrable generators for C

exp
naive.R/ such that the arguments of the exponentials

are distinct polynomials cannot be integrable (see Proposition 6.5(3)). The proof of
this latter result uses the theory of continuously uniformly distributed maps and is
postponed to Section 6.

Finally, in Section 7 we deduce a series of consequences of our main results:
we prove an asymptotic result for elements of C

exp
naive.R/, we give two examples of

functions that are in C exp.R/ but not in C
exp
naive.R/, and we prove that C exp is sta-

ble under taking pointwise limits and also has an analogue for parametric families
of the completeness theorem for Lp-spaces. Moreover, we prove that the exten-
sion of the Fourier transform to L2.Rn/ sends C exp.Rn/\L2.Rn/ onto C exp.Rn/\

L2.Rn/.
For the reader’s convenience, we describe the dependence relations between the

results in the two following diagrams. The first diagram concerns the stability of C exp

under integration (see Theorem 2.12).
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Proposition 6.5 Theorem 5.2

Theorem 2.20 Proposition 2.19

Theorem 2.12

The second diagram concerns the Lp-completeness and the stability of C exp under
the Fourier–Plancherel transform (see Proposition 8.2 and Theorem 8.3).

Remark 8.5 Lemma 8.9 Proposition 8.7 Lemma 8.6

Theorem 5.2 Lemma 8.10

Proposition 8.2

Theorem 8.3

3. Preparation of subanalytic and constructible functions
This section gives the version of the preparation theorem for subanalytic and con-
structible functions that we will use throughout the article. It is mostly a review of
ideas from [20] and [9] but formulated in a way that is convenient for our current
purposes.

Remark 3.1
It is well known that every subanalytic function of one variable admits a convergent
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Puiseux expansion at C1 (see, e.g., [22], [28]). More precisely, if g 2 S.R/, then
there are c 2 R, d 2 N, r 2 Q (which can be chosen as an integer multiple of 1

d
),

and an absolutely convergent power series H 2R¹yº, with H.0/D 0, such that for x
sufficiently large

g.x/D cxr
�
1CH.x�

1
d /
�
: (10)

In particular, for x large, g can be written as

g.x/D p.x
1
d /C g0.x/; (11)

where p 2RŒy�, with p.0/D 0, and g0 is a bounded subanalytic function.

The subanalytic preparation theorem given in [20, Théorème 1] can be viewed
as a parametric version (in several variables) of the preceding remark, and the con-
structible preparation theorem given in [9, Corollary 3.5] is the natural extension of
this latter result to the context of constructible functions.

We fix some notation.

Definition 3.2
A set A � RmCn is open over Rm if the fiber Ax is open in Rn for all x 2…m.A/.
For any set X �Rm, call a map f W X!Rn analytic if f extends to an analytic map
on a neighborhood of X in Rm.

Recall Notation 2.21.

Definition 3.3
A set A � RmCn is a cell over Rm if A is subanalytic and, for each j 2 ¹1; : : : ; nº,
…mCj .A/ is either the graph of an analytic function in S.…mCj�1.A// or else

…mCj .A/D
®
.x; y�j / W .x; y<j / 2…mCj�1.A/; aj .x; y<j / < yj < bj .x; y<j /

¯
for some analytic, subanalytic functions aj .x; y<j / < bj .x; y<j /, where we also
allow the possibility that aj 	 �1 and the possibility that bj 	 C1. If m D 0,
we will just say that A is a subanalytic cell.

Definition 3.4
Let A � RmC1 be a cell over Rm that is open over Rm, and write .x; y/D .x1; : : : ;
xm; y/ for coordinates on RmC1. Call � W …m.A/!R a center for A if the following
hold.
(1) � is an analytic subanalytic function.
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(2) The graph of � is disjoint from A and is either contained in or is disjoint from
the closure of A in …m.A/�R.

(3) The image of � is contained in one of the sets .�1; 0/, ¹0º, or .0;C1/.
Moreover, when � ¤ 0, the closure of ¹jy=�.x/j W .x; y/ 2 Aº in R is a com-
pact subset of .0;C1/.

(4) The set ¹y � �.x/ W .x; y/ 2 Aº is contained in one of the sets .�1;�1/,
.�1; 0/, .0; 1/, or .1;C1/.

Note that, when � is a center for A, there exist unique �; 	 2 ¹�1; 1º such that®
�
�
y � �.x/

��
W .x; y/ 2A

¯
� .1;C1/

and A is of the form

AD
®
.x; y/ W x 2…m.A/; a.x/ < �

�
y � �.x/

��
< b.x/

¯
(12)

for some analytic, subanalytic functions 1 � a.x/ < b.x/, where either b <C1 on
…m.A/ or b 	C1 on …m.A/.

Define P� D .P�;1; : : : ;P�;mC1/ W …m.A/� .1;C1/!…m.A/�R by

P� .x; y/D
�
x;�y� C �.x/

�
: (13)

Define A� D P�1� .A/, and note that

A� D
®
.x; y/ W x 2…m.A/; a.x/ < y < b.x/

¯
(14)

and that P� restricts to a bijection P� W A� !A whose inverse is given by

P�1� .x; y/D
�
x;�

�
y � �.x/

���
:

We will henceforth restrict P� to A� , considering it to be a bijection from A� to A.

Remark 3.5
When b 	 C1, necessarily 	 D 1 and the second sentence of Definition 3.4(3)
implies that � D 0.

For any polyradius r D .r1; : : : ; rN / 2 .0;C1/N , define

Br.C/D
®
z 2CN W jz1j � r1; : : : ; jzN j � rN

¯
and

Br.R/DBr.C/\RN ;

where z D .z1; : : : ; zN /.
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Definition 3.6
Let  W X ! RN be a subanalytic map such that  .X/ � Br.R/ for some r 2
.0;C1/N . We call f W X ! R a  -function if there exists a real analytic function
F such that f D F ı  and F is given by a single convergent power series in N
variables, centered at 0 and converging in some open neighborhood of Br.R/ in RN .

Observe that F extends uniquely to a complex analytic function on a neighbor-
hood of Br.C/ in CN . If we additionally have thatˇ̌

F.z/� 1
ˇ̌
< 1 for all z 2Br.C/;

then we call f a  -unit.

Remarks 3.7
Let f D F ı be a  -unit, with r as above. Then we have the following.
(1) There exist strictly positive constants k < K such that k < jF.x/j < K for

every x 2Br .R/.
(2) The set F.Br.C// is compact. Therefore, there exists " 2 .0; 1/ such that

jF.z/� 1j< 1� " for all z 2Br.C/.
(3) Remark 3.5 shows that the natural logarithm extends to a holomorphic func-

tion on a neighborhood of F.Br.C// in CN , so logF is given by a single
convergent power series on Br .C/ centered at 0. Therefore, logf WX!R is
a  -function.

Definition 3.8
Consider the cell A in (12) and a bounded, analytic, subanalytic map  , defined on
A, of the form

 .x;y/D
�
c1.x/; : : : ; cN .x/;

� a.x/

�.y � �.x//�

�1=d
;
��.y � �.x//�

b.x/

�1=d�
if b <C1;

 .x;y/D
�
c1.x/; : : : ; cN .x/;

� a.x/

�.y � �.x//�

�1=d�
if b 	C1;

for some positive integer d and some analytic functions c1; : : : ; cN .
We say that a subanalytic function f W A!R is  -prepared if

f .x;y/D f0.x/
ˇ̌
y � �.x/

ˇ̌�
u.x;y/

on A for some analytic f0 2 S.…m.A//, 
 2Q, and u a  -unit.
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Remark 3.9
We will frequently apply this concept to the situation when AD A� (namely, � D 0
and � D 	 D 1), in which case

 .x;y/D
�
c1.x/; : : : ; cN .x/;

�a.x/
y

�1=d
;
� y

b.x/

�1=d�
if b <C1;

 .x;y/D
�
c1.x/; : : : ; cN .x/;

�a.x/
y

�1=d�
if b 	C1;

(15)

and

f .x;y/D f0.x/y
�u.x;y/; (16)

on A� for some analytic f0 2 S.…m.A//, 
 2Q, and u a  -unit.

PROPOSITION 3.10 (Preparation of constructible functions)
Let D � RmC1 be subanalytic, and let F � C.D/ be a finite set of constructible
functions. Then there exists a finite partition A of D into cells over Rm such that for
each A 2A that is open over Rm there exists a center � for A such that, for each
f 2 F , we can write f ıP� as a finite sum

f ıP� .x; y/D
X
j2J

gj .x/y
rj .logy/sj hj .x; y/ (17)

on A� , where
(1) A� is as in (14);
(2) P� is as in (13);
(3) the functions hj are  -functions (see Definition 3.6), where  is as in (15) for

some analytic functions c1; : : : ; cN and some integer d > 0;
(4) sj 2N and the rj ’s are integer multiples of 1=d ;
(5) the functions gj are analytic and in C.…m.A//.

Proof
We apply [9, Corollary 3.5], and we obtain a cell decomposition A such that (17)
holds, with conditions (1) and (2) satisfied. Up to refining A, we may assume that
(5) also holds. We must now show that, up to some refinement of A, we may assume
that conditions (3) and (4) hold as well. By [9, Corollary 3.5], we know that a weaker
version of condition (3) holds, namely, the hj ’s are of the form fFj ı e , where fFj is a
power series converging on some open set Oj containing the closure of the image ofe and e is a bounded map whose components are

c1.x/; : : : ; cM .x/;
�
e1.x/=y

�1=d
;
�
e2.x/y

�1=d



20 CLUCKERS, COMTE, MILLER, ROLIN, and SERVI

for some M � 0, some d > 0, and some analytic, subanalytic functions c1; : : : ; cM ;
e1; e2. We now explain, in the case in which b.x/ < C1, how we can obtain the
quotients a.x/=y and y=b.x/ as arguments instead of e1.x/=y and e2.x/y. (The
case b.x/DC1 is similar and even easier.) Since e1.x/=y and e2.x/y are bounded
and since y runs from a.x/ to b.x/, one has that e1.x/=a.x/ and e2.x/b.x/ are also
bounded. Let  .x;y/ be�

c1.x/; : : : ; cM .x/;
�
e1.x/=a.x/

�1=d
;
�
e2.x/b.x/

�1=d
;
�a.x/
y

�1=d
;
� y

b.x/

�1=d�
and

� WRMC4 3 .z1; : : : ; zM ;Z1;Z2;Z3;Z4/ 7! .z1; : : : ; zM ;Z1Z3;Z2Z4/ 2R
MC2:

Then  is bounded, e D � ı  , and the closure of the image of  is contained in
the open sets ��1.Oj /. We rename cMC1 D .e1.x/=a.x//

1=d and cMC2 D

.e2.x/b.x//
1=d , and we set N DM C 2. It is clear that the power series Fj DfFj ı�

converge on ��1.Oj / and that Fj . /DfFj .e / on A� . Hence, condition (3) holds.
Finally, by replacing d by an integer multiple if necessary, we can assume that con-
dition (4) also holds.

Remark 3.11
We have stated Proposition 3.10 in the transformed coordinates (via P� ) out of con-
venience. In the original coordinates, (17) becomes

f .x;y/D
X
j2J

egj .x/ˇ̌y � �.x/ˇ̌erj �log
ˇ̌
y � �.x/

ˇ̌�sjehj .x; y/
on A, where egj .x/D 	 sj gj .x/,erj D 	 rj , and eh.x;y/D h ıP�1

�
.x; y/.

Remark 3.12
If F � S.D/ is a finite collection of subanalytic functions, then the proof of Propo-
sition 3.10 (where we replace the use of [9, Corollary 3.5] by the use of [9, Theo-
rem 3.4]) shows that, for each f 2 F , on A� we can write f ıP� in the  -prepared
form in (16). In addition, it follows from the proof of the subanalytic preparation
[19, Théorème 1] that if " 2 .0; 1/ is given beforehand, then the preparation can be
constructed so that each  -unit u, as given in (16), is within " of 1, by which we
mean that u D U ı  for some r 2 .0;1/M (where M D N C 2 when b < C1,
and M D N C 1 when b 	C1/ such that  .A� /� Br .R/ and some real analytic
function U on Br.R/ that extends to a complex analytic function on a neighborhood
of Br .C/ in CM such that jU.z/� 1j< " for all z 2Br .C/.
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Remark 3.13
In the situation described in Proposition 3.10, we may also assume that the following
two properties hold when b 	C1. Let J1 D ¹j 2 J W hj D 1º. Then,
(1) for each j 2 J n J1, rj <�1;
(2) ..rj ; sj //j2J1 is a family of distinct pairs in Q�N.
To see this, note that because b 	C1, we may write hj as a convergent power series

hj .x; y/D

C1X
kD0

hj;k.x/
�a.x/
y

�k=d
for .c1; : : : ; cN /-functions hj;k . To obtain property (1), for each j 2 J , fix nj 2 N

such that

rj �
nj

d
<�1;

and write the j th term of (17) as

nj�1X
kD0

gj .x/hj;k.x/a.x/
k=dyrj�k=d .logy/sj CRj .x; y/;

where

Rj .x; y/D gj .x/a.x/
nj =dyrj�nj =d .logy/sj

� C1X
kDnj

hj;k.x/
�a.x/
y

�.k�nj /=d�
:

To obtain property (2), simply sum up terms in (17) for j 2 J1 with equal powers rj
and sj .

We now study the integrability properties of the prepared form given in (17). The
following remarks will be useful in Sections 4 and 6.

Remark 3.14
Consider the situation described in Proposition 3.10 for some A 2A. In the notation
of Proposition 3.10, for each j 2 J , write

Gj .x; y/ WD gj .x/y
rj .logy/sj hj .x; y/:

(1) Note that we have

@yP� .y/ WD
@P�;mC1

@y
.x;y/D �	y��1;

that 	 � 1 equals either 0 or �2, and that

Int
�
f �A;…m.A/

�
D Int

�
.f ıP� /@yP� ;…m.A/

�
:
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(2) For each j 2 J and x 2…m.A/, y 7! Gj .x; y/ extends to a continuous (in
fact, analytic) function on the closure in R of the fiber .A� /x , and likewise for
@yP� .
In particular, when b <C1, Int.Gj @yP� ;…m.A//D…m.A/ for each j 2 J .

(3) Let b 	C1, and recall Remark 3.13(1). For each j 2 J nJ1 and x 2…m.A/,
the function y 7!Gj .x; y/@yP� .y/ is o.y��2/ as y!C1 and is therefore
integrable. For each j 2 J1,

Gj .x; y/@yP� .y/D �	gj .x/y
rjC��1.logy/sj ;

which is integrable in y if and only if gj .x/D 0 or rj C 	 < 0.
Therefore, by defining

J Int D .J n J1/[ ¹j 2 J1 W rj C 	 < 0º;

we see that, for each j 2 J ,

Int
�
Gj @yP� ;…m.A/

�
D

´
…m.A/ if j 2 J Int;

¹x 2…m.A/ W gj .x/D 0º if j 2 J n J Int:

(4) In the situation of Remark 3.13, define the constructible functions

g.x;y/D
X
j2J Int

Gj .x; y/ for all .x; y/ 2A� ;

h.x/D
X

j2JnJ Int

g2j .x/ for all x 2…m.A/:

Then

Int
�
f �A;…m.A/

�
D
®
x 2…m.A/ W h.x/D 0

¯
;

Int
�
g@yP� ;…m.A/

�
D…m.A/;

and

f ıP� .x; y/D g.x;y/ for all .x; y/ 2A� with x 2 Int
�
f �A;…m.A/

�
:

To see this, note that Remark 3.13 shows that Int.g@yP� ;…m.A//D…m.A/,
and clearly

f ıP� D g on the set
®
.x; y/ 2A� W h.x/D 0

¯
;

so ¹x 2…m.A/ W h.x/ D 0º � Int.f � A;…m.A//. To show that Int.f � A;
…m.A// � ¹x 2 …m.A/ W h.x/ D 0º, note that if x 2 …m.A/ is such that
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h.x/ ¤ 0, then by choosing j0 in the set ¹j 2 J n J Int W gj .x/ ¤ 0º with
.rj0 ; sj0/ greatest with respect to the lexicographical order on Q�R, it follows
from Remark 3.13(2) that

lim
y!C1

f .x;y/

Gj0.x; y/
D 1;

so f .x; �/ …L1.Ax/ by the remark.
(5) In particular, if Int.f;X/DX , then Remarks 3.14(2) and 3.14(4) above show

that, for each j 2 J , we have Int.Gj @yP� ;…m.A//D…m.A/.

4. Integrating superintegrable generators
This section is dedicated to the proof of Proposition 2.19, of which we recall the
statement.

PROPOSITION

Let f be a generator for C exp.X � Rn/ that is superintegrable over X , and define
F W X!C by

F.x/D

Z
Rn

f .x;y/dy:

Then F 2 C exp.X/.

Proof
Assume that X �Rm, and write

f .x;y/D g.x;y/ei�.x;y/�.x;y/ for .x; y/ 2X �Rn;

where g 2 C.X �Rn/, � 2 S.X �Rn/, and � D �h;` for some ` 2N and h 2 S.X �

Rn �R/ with Int.h;X �Rn/DX �Rn.
Because jf .x;y/j � f abs.x; y/ for all .x; y/ 2 X � Rn (see Definition 2.17), it

follows that f .x; �/ 2 L1.Rn/ for all x 2 X . Moreover, the Fubini–Tonelli theorem
shows that, for each x 2X ,

.y; t/ 7! g.x;y/h.x;y; t/
�
log jt j

�`
is in L1.Rn �R/, and the iterated integralZ

Rn

f .x;y/dy D
Z
Rn

�Z
R

g.x;y/ei�.x;y/h.x;y; t/
�
log jt j

�`
eit dt

�
dy

can be computed as a product integral
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Rn�R

g.x;y/ei�.x;y/h.x;y; t/
�
log jt j

�`
eit dy ^ dt:

Therefore, up to replacing n by nC 1, we may simply assume that � D 1.
Now construct a finite partition A ofX�Rn into cells over Rm such that, for each

A 2A that is open over Rm, either �.x;y/D �0.x/ on A for some �0 2 S.…m.A//

or else the function y 7! �.x;y/ is C 1 on Ax with � @�
@yj

> 0 on Ax for some � 2
¹�1; 1º and j 2 ¹1; : : : ; nº.

When � D �0, Z
Ax

f .x;y/dy D ei�0.x/
Z
Ax

g.x;y/dy: (18)

The fact that C is stable under integration (see [8], [9]) shows that the integral of g
with respect to y is in C.…m.A//. Hence, (18) is in C

exp
naive.…m.A//.

In the other case, by pulling back by the inverse of the map .x; y/ 7! .x;�.x;y/;

y<j ; y>j / and multiplying by the Jacobian of this map, we may simply assume that
�.x;y/D y1. Write eAD…mC1.A/, and note that the functioneg W eA!R defined by

eg.x;y1/D Z
A.x;y1/

g.x;y1; y>1/dy>1 for each .x; y1/ 2 eA;
is constructible and thatZ

Ax

g.x;y/ei�.x;y/ dy D
Z
eAx eg.x;y1/eiy1 dy1 for each x 2…m.A/:

We apply Proposition 3.10 toeg.x;y1/ and then work piecewise, thereby focusing
on one open cell eB � eA given by the preparation, which is open over Rm. By applying
Remark 3.14(5), we may write Z

eBx eg.x;y1/eiy1 dy1

as a finite sum of terms of the form

g0.x/

Z
eBx
ˇ̌
y1 � �.x/

ˇ̌reu.x;y1/�log
ˇ̌
y1 � �.x/

ˇ̌�s
eiy1 dy1; (19)

where g0 2 C.…m.eB//, r 2 Q, s 2 N, eu is a  -function (for some  ), and � is the
center given by the preparation on eB . Thus, for some � 2 ¹�1; 1º, by applying the
coordinate change .x; y1/ 7! .x; �y1C �.x// we may write (19) as

�g0.x/e
i�.x/

Z
Bx

yr1.logy1/
su.x;y1/e

i�y1 dy1; (20)
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where Bx � .0;C1/ and u are the pullbacks of eBx andeu by this coordinate change.
Note that, up to performing the coordinate transformation y1 7! �y1, the one-variable
integral in (20) is of the form �h;l with l D s and h.x;y1/ D yr1u.x;y1/�Bx .y1/,
where �Bx is the characteristic function of the subanalytic set Bx . This concludes the
proof of Proposition 2.19.

5. Preparation of functions in C exp

Throughout this section, X denotes a subanalytic subset of Rm, and we write .x; y/
for coordinates on Rm �R. This section states and proves our main preparation the-
orem for functions in C exp. The purpose of the preparation theorem is to express a
given f 2 C exp.X �R/ as a finite sum of generators for C exp.X �R/ that are either
superintegrable over X or are “naive in y” (in the sense that the � -functions in these
terms depend only on x and not on y; see Definition 5.1).

Definition 5.1
Let A�RmC1 be a subanalytic set, and let T .x;y/ 2 C exp.A/ be a generator. We say
that T is naive in y if T is of the form

T .x;y/D f .x/yr.logy/sei�.x;y/;

where f 2 C exp.…m.A//, r 2Q, s 2 N, and � 2 S.A/. Note that, if T is naive in y,
then the function � appearing in (9) does not depend on y.

We use the notation from Definition 3.4 in the following theorem.

THEOREM 5.2
Let X �Rm be a subanalytic set, and let f 2 C exp.X �R/. Then there exists a finite
partition A of X �R into cells over Rm such that, for each A 2A that is open over
Rm, there exists a center � for A for which we may express f ıP� as a finite sum

f ıP� .x; y/D
X
j2J

Tj .x; y/

on A� D ¹.x; y/ W x 2…m.A/; a.x/ < y < b.x/º, where each Tj is a generator for
C exp.A� /, such that
(1) if b <C1, then for each j , Tj is superintegrable over …m.A/;
(2) if b 	C1, then there exists a positive integer d and a partition J D J int [

J naive such that
(a) for each j 2 J int, Tj is superintegrable over …m.A/;
(b) for each j 2 J naive, Tj is naive in y, is not superintegrable over

…m.A/, and is of the form
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Tj .x; y/D fj .x/y
rj .logy/sj ei�j .x;y/; (21)

where fj 2 C exp.…m.A//, rj 2 Q \ Œ�1;C1/, sj 2 N, and �j is a
polynomial in y1=d (for some d 2 N) with coefficients in S.…m.A//

such that �j .x; 0/D 0 for all x 2…m.A/; moreover,��
rj ; sj ; �j .x; y/

��
j2J naive

is a family of distinct tuples in Q�N�RŒy1=d �.

Remark 5.3
Let us restrict our attention to a cell of the form

AD
®
.x; y/ W x 2…m.A/; y > a.x/

¯
: (22)

(By Remark 3.5, we have ADA� .) The proof of Theorem 5.2 will actually show that,
for every j 2 J , there are rj 2 Q, sj 2 N, and a function gj .x; y/ 2 C exp.X � R/

which is bounded in y (more precisely, there is a subanalytic function � W…m.A/!

Œ0;C1/ such that, 8y > a.x/, jgj .x; y/j< �.x/) such that

Tj .x; y/D y
rj .logy/sj gj .x; y/: (23)

Moreover, if j 2 J Int, then rj < �1, and if j 2 J naive, then, in the notation of (21),
we have gj .x; y/D fj .x/ei�j .x;y/.

The proof of Theorem 5.2 will be broken down into several propositions and
lemmas.

Definition 5.4
Let X �Rm be a subanalytic set, and let A�X �R be a cell over Rm which is open
over Rm. Let � be a center for A, so that we can write

A� D
®
.x; y/ W x 2…m.A/; a.x/ < y < b.x/

¯
;

for some analytic, subanalytic functions 1 � a.x/ < b.x/, where we also allow the
case when b 	C1 on …m.A/, as in Definition 3.4.

Fix d 2N n ¹0º and a bounded, analytic, subanalytic map  on A� of the form

 .x;y/D
�
c1.x/; : : : ; cN .x/;

�a.x/
y

�1=d
;
� y

b.x/

�1=d�
if b <C1;

and  .x;y/D
�
c1.x/; : : : ; cN .x/;

�a.x/
y

�1=d�
if b 	C1:

(24)
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Let J be an index set, and for all j 2 J , let

Aj D
®
.x; y; t/ W .x; y/ 2A� ; aj .x; y/ < t < bj .x; y/

¯
;

for some analytic, subanalytic functions 1 � aj < bj , where we also allow the case
when bj 	C1 on A� .

Suppose also that aj , bj , and bj � aj are  -prepared on A� as follows:

aj .x; y/D aj;0.x/y
˛j uaj .x; y/;

bj .x; y/D bj;0.x/y
ˇj ubj .x; y/;

bj .x; y/� aj .x; y/D cj;0.x/y
ıj ucj .x; y/

for some analytic, subanalytic functions aj;0; bj;0; cj;0, some ˛j ; ˇj ; ıj 2 Q, and
some  -units uaj ; ubj ; ucj . (When bj DC1 we stipulate that bj;0 D cj;0 DC1,
ˇj D ıj D 0, and ubj D ucj D 1.)

In this situation, given dj 2N n ¹0º, we define the bounded, analytic, subanalytic
map  j on Aj as

 j .x; y; t/D
�
 .x;y/;

�aj;0.x/y˛j
t

�1=dj
;
� t

bj;0.x/y
ˇj

�1=dj �
if bj <C1;

and  j .x; y; t/D
�
 .x;y/;

�aj;0.x/y˛j
t

�1=dj �
if bj 	C1:

(25)

The next proposition establishes that, after writing f as a sum of generators and
after preparing suitably all the subanalytic and constructible functions appearing in
the generators, we obtain a decomposition of X �R into cells over which each of the
generators has a well organized form. In particular, the generators are superintegrable
over every cell in the partition whose fibers over Rm are bounded (see Remark 5.7(2)
below).

PROPOSITION 5.5
Let f 2 C exp.X � R/, for some subanalytic set X � Rm. Then there exists a finite
partition A of X �R into cells over Rm such that, for each A 2A that is open over
Rm, there exists a center � for A for which we may express f ıP� as a finite sum

f ıP� .x; y/D
X
j2J

Tj .x; y/ (26)

on A� D ¹.x; y/ W x 2…m.A/; a.x/ < y < b.x/º, where each Tj is a generator for
C exp.A� / of the form
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Tj .x; y/D fj .x/y
pj .logy/qj ei�j .x;y/�j .x; y/ (27)

for some fj 2 C.…m.A//, pj 2Q, qj 2N, �j 2 S.A� /, and function �j , where

�j .x; y/D

Z bj .x;y/

aj .x;y/

j .x; y; t/dt (28)

with

j .x; y; t/D t
rj hj .x; y; t/.log t /sj ei�j t

for some rj 2 Q, sj 2 N, �j 2 ¹�1; 1º, analytic, subanalytic functions aj ; bj as in
Definition 5.4, and some  j -function hj (where  j is as in (25), for some d; ;dj ).
We may furthermore assume that the rational numbers ˛j , ˇj , and ıj (see Defini-
tion 5.4) are integer multiples of 1=d .

Proof
Write f as a finite sum of generators for C exp.X �R/, say,

f .x;y/D
X
j2J

Tj .x; y/;

where

Tj .x; y/D gj .x; y/e
i�j .x;y/�j .x; y/;

with

�j .x; y/D

Z
R

Hj .x; y; t/
�
log jt j

�`j eit dt:

Apply Proposition 3.10 (in the form in Remark 3.11) to the collection®
Hj .x; y; t/

�
log jt j

�`j ¯
j2J
� C.X �R�R/: (29)

This gives a finite partition B of .X � R/ � R into cells over RmC1. By further
partitioning in .x; y/, we may assume that A WD ¹…mC1.B/ WB 2Bº is a partition of
X �R. By working piecewise, we may focus on one A 2A. There are finitely many
disjoint cells B 2B such that …mC1.B/D A. Pick one such B which is open over
RmC1. Write

B D
®
.x; y; t/ W .x; y/ 2A;ea.x;y/ < t �‚.x;y/ <eb.x;y/¯;

where ‚ is the center given by the preparation of the collection in (29). We fix an
element of this collection, and we focus on one summand of the preparation of such
an element. This will have the form
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f0.x; y/
ˇ̌
t �‚.x;y/

ˇ̌r�
log
ˇ̌
y �‚.x;y/

ˇ̌�s
h.x;y; t/;

where f0 2 C.A/ and h is a ‰-function (for a suitable bounded subanalytic ‰).
We write eit D ei.t�‚.x;y//ei‚.x;y/. By factoring out of the integral the term

f0.x; y/ei‚.x;y/ and by absorbing f0 in the constructible coefficient g and ei‚.x;y/

in the exponential term ei�.x;y/, we can reduce to studying generators of the form

g.x;y/ei�.x;y/
Z eb.x;y/
ea.x;y/

ˇ̌
t �‚.x;y/

ˇ̌r
h.x;y; t/

�
log
ˇ̌
t �‚.x;y/

ˇ̌�s
ei.t�‚.x;y// dt

(30)

on A. Now, the set ®
t �‚.x;y/ W .x; y; t/ 2B

¯
(31)

is contained in one of the sets .�1;�1/, .�1; 0/, .0; 1/, or .1;C1/.
Suppose first that (31) is contained in either .�1; 0/ or .0; 1/. Then ei.t�‚.x;y//

is a complex-valued subanalytic function on A (see Definition 2.3), so the integral
in (30) is a complex-valued constructible function on A. This implies that (30) is
in C

exp
naive.A/ (because C is stable under integration); hence, we can apply Proposi-

tion 3.10 to the constructible part of (30), preparing it with respect to the variable y.
Now, we can view the  -function obtained in this preparation as a � -function of the
form (28) (see Remark 2.6), and we are done.

Now suppose that (31) is contained in .�1;�1/ or .1;C1/. Then by applying
the change of coordinates t 7! �t C‚.x;y/ for an appropriate choice of � 2 ¹�1; 1º
and adjusting the definitions of ea, eb, and h accordingly, we may assume that 1 �ea.x;y/ <eb.x;y/ and that (30) is of the form

g.x;y/ei�.x;y/
Z eb.x;y/
ea.x;y/ t

rh.x;y; t/.log t /sei�t dt:

Summing up, we have constructed a finite partition A of X �R into subanalytic
sets such that for each A 2A we may write f as a finite sum

f .x;y/D
X
j2J

gj .x; y/e
i�j .x;y/�j .x; y/ (32)

on A, where gj 2 C.A/, �j 2 S.A/, and

�j .x; y/D

Z ebj .x;y/
eaj .x;y/ ej .x; y; t/dt (33)

with
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ej .x; y; t/D t rjehj .x; y; t/.log t /sj ei�j t ; (34)

where 1 �eaj < ebj (with either ebj < C1 or ebj 	 C1), rj 2 Q, sj 2 N, �j 2
¹�1; 1º, and ehj is a e j -function, with

e j .x; y; t/D �ecj;1.x; y/; : : : ;ecj;Nj .x; y/;�eaj .x; y/t

�1=dj
;
� tebj .x; y/

�1=dj �
ifebj <1;

and e j .x; y; t/D �ecj;1.x; y/; : : : ;ecj;Nj .x; y/;�eaj .x; y/t

�1=dj �
ifebj 	C1;

defined on

eAj D ®.x; y; t/ W .x; y/ 2A;eaj .x; y/ < t <ebj .x; y/¯:
We may additionally assume that the positive integer dj has been chosen so that rj is
an integer multiple of 1=dj .

In order to have a more uniform notation, we will assume that e j maps into
RNjC2 for each j 2 J . (This is the case whenebj <C1, and the argument adapts to
the case in which ebj 	C1 by simply ignoring the last component of e j involving
. tebj .x;y/ /1=dj .) For each j 2 J , fix pj D .pj;1; : : : ; pj;NjC2/ and �j D .�j;1; : : : ;

�j;NjC2/ in .0;1/NjC2 and also a real analytic function eHj on Bp.R/ such thate j .eAj / � Bp.R/, ehj D eHj ı e j , and eHj extends to a complex analytic function
on a neighborhood of BpC	.C/. We may assume that pj;NjC1 D pj;NjC2 D 1. Fix
" 2 .0; 1/ sufficiently small so that, for all j 2 J and k 2 ¹1; : : : ;Nj C 2º,´

1C"
1�"

pj;k <pj;k C �j;k if k 2 ¹1; : : : ;Nj º;

.1C"
1�"

/1=dj < 1C �j;k if k DNj C 1 or k DNj C 2:
(35)

For each set A 2A, apply Proposition 3.10 (with respect to the variable y) to

¹gj ºj2J � C.A/ and ¹ecj;1; : : : ;ecj;Nj ;eaj ;ebj ;ebj �eaj ºj2J � S.A/

so that the units occurring in the preparation of ¹ecj;1; : : : ;ecj;Nj ;eaj ;ebj ;ebj �eaj ºj2J
are within " of 1 (see Remark 3.12), and then redefine A to be the finer partition of
X �R into the cells over Rm thus created.

Focus on one cell A 2 A that is open over Rm, and let � be the center of A
given by the preparation. We now use the notation set up in Definition 5.4, where
aj Deaj ıP� and bj Debj ıP� and where the positive integer d in Definition 5.4 has
been chosen to be a common denominator of the set of rational exponents ¹˛j ; ˇj ; ıj W
j 2 J º and also of the rational exponents of y in the  -prepared forms of each of the
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functions cj;k WDecj;k ıP� with j 2 J and k 2 ¹1; : : : ;Nj º. Since each constructible
function gj ıP� is prepared on A� , it is apparent from (32), (33), and (34) that f ıP�
is of the form asserted in the conclusion of the proposition except for one detail:
although each function hj .x; y; t/ WD ehj .P� .x; y/; t/ is clearly a e j .P� .x; y/; t/-
function, the conclusion of the proposition asserts that hj is a  j -function for the map
 j defined in Definition 5.4. To finish the proof, we will show that hj is a j -function
after  j is modified by extending its list of component functions c1.x/; : : : ; cN .x/ in
x alone by some additional functions in x obtained from the  -prepared forms of the
functions in ¹cj;kºj;k .

In order to have a more uniform notation when showing this, we will assume that
 maps into RNC2 (as would be the case when b <C1). For each j 2 J , define
KCj to be the set of all k 2 ¹1; : : : ;Nj º such that the exponent of y in the  -prepared

form of cj;k is greater than or equal to 0, and define K�j D ¹1; : : : ;Nj º n K
C
j . For

each j 2 J and k 2 ¹1; : : : ;Nj º, we may write

cj;k.x; y/D

´
cj;k;0.x/.

y
b.x/

/�j;k=dvj;k.x; y/ if k 2KCj ;

cj;k;0.x/.
a.x/
y
/�j;k=dvj;k.x; y/ if k 2K�j ;

for some cj;k;0 2 S.…m.A//, 
j;k 2 N, and  -unit vj;k . Fix q D .q1; : : : ; qNC2/ in
.0;1/NC2 such that  .A� /�Bq.R/ and such that for all j 2 J and k 2 ¹1; : : : ;Nj º
we have uaj D Uaj ı , ubj D Ubj ı , and vj;k D Vj;k ı for some real analytic
functions Uaj , Ubj , and Vj;k on Bq.R/ which extend to complex analytic functions
on a neighborhood of Bq.C/ such that, for each U 2 ¹Uaj ;Ubj ; Vj;kºj;k ,ˇ̌

U.z/� 1
ˇ̌
< " for all z 2Bq.C/:

We may assume that qNC1 D qNC2 D 1.
Focus on one choice of j 2 J . Writing out the equation hj .x; y; t/ D eHj ıe j .P� .x; y/; t/ in full detail with the  -prepared forms of its components gives

hj .x; y; t/D eHj��cj;k;0.x/�a.x/
y

��j;k=d
Vj;k ı .x;y/

�
k2K�

j

;

�
cj;k;0.x/

� y

b.x/

��j;k=d
Vj;k ı .x;y/

�
k2K

C

j

;

�aj;0.x/y˛j
t

�1=dj �
Uaj ı .x;y/

�1=dj ;� t

bj;0.x/y
ˇj

�1=dj �
Ubj ı .x;y/

��1=dj �: (36)

Consider k 2 ¹1; : : : ;Nj º, and observe that on A� we have that jcj;k.x; y/j � pj;k ,
that jvj;k.x; y/j � 1� ", and that a.x/

y
and y

b.x/
can take values arbitrarily close to 1
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(for each fixed x 2…m.A/). It follows thatˇ̌
cj;k;0.x/

ˇ̌
�
pj;k

1� "
(37)

on A� . Similar reasoning shows thatˇ̌̌aj;0.x/y˛j
t

ˇ̌̌1=dj
�
� 1

1� "

�1=dj
and

ˇ̌̌ t

bj;0.x/y
ˇj

ˇ̌̌1=dj
� .1C "/1=dj

(38)

hold on Aj as well. Clearlyˇ̌̌a.x/
y

ˇ̌̌1=d
� 1 and

ˇ̌̌ y

b.x/

ˇ̌̌1=d
� 1 (39)

on A� , and also for all k 2 ¹1; : : : ;Nj º we have

jVj;kj � 1C "; jUaj j
1=dj � .1C "/1=dj ; and

jUbj j
�1=dj �

� 1

1� "

�1=dj (40)

on Bq.C/. Using the variables .W;X;Y;Z/D ..Wk/NkD1; .Xj;k/
Nj
kD1

; Y1; Y2;Z1;Z2/,
define

Hj .W;X;Y;Z/ WD eHj ��XkY �j;k1 Vj;k.W /
�
k2K�

j

;
�
XkY

�j;k
2 Vj;k.W /

�
k2K

C

j

;

Z1
�
Uaj .W /

�1=dj ;Z2�Ubj .W /��1=dj �:
Define

�D
�
q1; : : : ; qN ;

p1

1� "
; : : : ;

pNj

1� "
; 1; 1; 1; 1

�
:

Observe from the inequalities (37)–(40), from the conditions (35) imposed upon our
choice of ", and from (36) that the range of the map on Aj given by

.x; y; t/ 7!
��
ck.x/

�N
kD1

;
�
cj;k.x/

�Nj
kD1

;
�a.x/
y

�1=d
;
� y

b.x/

�1=d
;

�aj;0.x/y˛j
t

�1=dj
;
� t

bj;0.x/y
ˇj

�1=dj �
(41)

is contained in B
.R/, that Hj is defined as a complex analytic function on a neigh-
borhood of B
.C/, and that hj is the composition of Hj with the map (41). This
completes the proof.
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Definition 5.6
We call a generator for C exp.A� / of the form (27) a prepared generator.

Remarks 5.7
Fix a prepared generator Tj as in Proposition 5.5.
(1) If bj <C1, then we may suppose that rj D 0. If bj 	C1, then we may

suppose that rj <�1.
To see this, suppose first that bj <C1. If rj � 0, then write

gj .x; y/t
rj hj .x; y; t/

D
�
gj .x; y/

�
bj;0.x/y

ˇj
�rj ��� t

bj;0.x/y
ˇj

�rj
hj .x; y; t/

�
D egj .x; y/ehj .x; y; t/:

If rj < 0, then write

gj .x; y/t
rj hj .x; y; t/

D
�
gj .x; y/

�
aj;0.x/y

˛j
�rj ���aj;0.x/y˛j

t

��rj
hj .x; y; t/

�
D egj .x; y/ehj .x; y; t/:

Note that, in both cases, ehj is a  j -function (but not necessarily a  j -unit),
because rj is an integral multiple of 1=dj . We have hence reduced to the
case rj D 0. Suppose now that bj 	 C1. Let n0 be the smallest exponent
appearing in the series expansion of hj .x; y; t/ with respect to the variable

.
aj;0.x/y

˛j

t
/1=dj . Then we can factor out the power .aj;0.x/y

˛j

t
/n0=dj from

the expansion of hj and write

gj .x; y/t
rj hj .x; y; t/D

�
gj .x; y/

�
aj;0.x/y

˛j
�n0=dj �t rj�n0=djehj .x; y; t/;

where ehj is a  j -unit. Note that erj WD rj � n0=dj is necessarily strictly
smaller than �1. (Otherwise �j would not be defined.)

(2) Whenever b < C1, Tj is superintegrable over …m.A/. This is clear, since
for all x 2…m.A/, y 7! T abs

j .x; y/ extends to a continuous function on the
closure of Ax in R.

Remark 5.8
For all m 2 N, subanalytic X � Rm, and g 2 C exp.X/, there exists a finite partition
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A of X into subanalytic cells (see Definition 3.3) such that g �A is analytic for each
open set A 2A.

Proof
Apply Proposition 5.5 to f (except we now omit the variable y since we are working
on X rather than on X � R), and let A be the partition of X so obtained. Consider
an open set A 2 A. For each j 2 J , �j � A is analytic because it is the integral of
an analytic function with analytic limits of integration. (Namely, basic facts about
power series show that the antiderivative in t of the integrand j .x; t/ is analytic, and
evaluating this antiderivative at analytic limits of integration in x gives an analytic
function in x.) It therefore follows from (26) and (27) that f �A is analytic.

In view of Remark 5.7(2), we can focus our attention on cells which are
unbounded above. For such cells, our next goal is to reduce to the case where each
of the generators in (26) is either superintegrable or in C

exp
naive.A� /, or is such that the

variable y does not appear in the integration limits aj and bj of the � -function.

PROPOSITION 5.9
Proposition 5.5 holds with the additional property that, whenever b 	 C1, every
Tj is either superintegrable or in C

exp
naive.A� /, or there exist analytic and subanalytic

functions aj;0; bj;0 on …m.A/ such that aj .x; y/D aj;0.x/ and either bj 	C1 or
bj .x; y/D bj;0.x/.

In order to prove the above proposition, we first need to establish two technical
lemmas (Lemmas 5.12 and 5.13 below). Their aim is to reduce to the case of prepared
generators such that the variable y only appears in the units in the prepared form of
the integration limits of the � -function; that is, ˛j D ˇj D 0. To achieve this, our
main tool will be to compute � by integrating by parts. This will lead to rewriting the
prepared generator as a finite sum of generators which are either superintegrable or
in C

exp
naive.A� /, or are in a better form. (For example, the variable y now only appears

in one of the two integration limits.) We will also have to refine the partition into
cells along the way. This is harmless when we refine the partition with respect to the
variables x. When further partitioning with respect to the variable y, we will possibly
create new bounded cells, which can be handled as in Remark 5.7(2).

Definition 5.10
In the notation of Definition 5.4, suppose that bj <C1. We let  j;� and  j;C be
the maps obtained from  j by omitting the last and the second-to-last components of
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 j , respectively. We extend this definition to the case bj 	C1 by stipulating that
 j;� D j and  j;C D 0.

Remark 5.11
Note that, when bj 	C1, ˛j and ˇj are necessarily nonnegative, since aj ; bj � 1.

LEMMA 5.12 (Splitting)
Let f 2 C exp.X/ for some subanalytic set X �Rm, and let A 2A be one of the cells
obtained from Proposition 5.5 satisfying b DC1. Let Tj be one of the generators
corresponding to this A satisfying bj <C1, ˛j D 0, and ˇj > 0. Then we may write
Tj as a finite sum

P
Tk of prepared generators, where each Tk is either superinte-

grable or in C
exp
naive.A� /, or is such that bk 	C1 (and hence hk is a  k;�-function).

Proof
We consider a generator Tj as in the statement of the lemma. In the notation of Propo-
sition 5.5, let nj 2N be such that

pj � njˇj C ıj <�1: (42)

Our next aim is to write hj as a sum of three terms, depending on the choice of nj ,
as follows:

hj .x; y; t/D
� t

aj;0.x/

�rj;�
hj;�.x; y; t/C hj;0.x; y; t/

C
� t

bj;0.x/y
ˇj

�nj
hj;C.x; y; t/; (43)

where rj;� <�1 is rational, hj;� is a  j;�-function, hj;C is a  j;C-function, and hj;0
is a finite sum of terms of the form g.x;y/zk , where g is a  -function, k 2N, and z
is either . t

bj
/1=dj or .aj

t
/1=dj .

In order to do this, we expand hj as a series in the variables . t
bj
/1=dj ; .

aj
t
/1=dj ,

with  -functions as coefficients. Now, recalling that b 	C1 and ˛j D 0, for each
k; l 2N, write � t

bj;0.x/y
ˇj

�k=dj �aj;0.x/
t

�l=dj

D

8<:.
aj;0.x/

bj;0.x/y
ˇj
/l=dj . t

bj;0.x/y
ˇj
/.k�l/=dj if k � l;

.
aj;0.x/

bj;0.x/y
ˇj
/k=dj .

aj;0.x/

t
/.l�k/=dj if k < l;

and



36 CLUCKERS, COMTE, MILLER, ROLIN, and SERVI

aj;0.x/

bj;0.x/y
ˇj
D
h aj;0.x/

bj;0.x/a.x/
ˇj

i�a.x/
y

�ˇj
: (44)

The quotient on the left-hand side of (44) is bounded, since it is equal to the bounded
quotient aj

bj
multiplied by a unit. Moreover, for each x we may take y to be arbitrarily

close to a.x/, thereby making a.x/
y

arbitrarily close to 1. It follows that the function
in square brackets on the right-hand side of (44), which does not depend on y, is also
bounded and therefore can be included in the list of functions c1.x/; : : : ; cN .x/ in  .

Therefore, we can write hj as the sum of a  j;�-function of the formP
k�1 gj;k.x; y/.

aj;0.x/

t
/k=dj plus a  j;C-function of the form

P
k�0egj;k.x;

y/. t

bj;0.x/y
ˇj
/k=dj , where gj;k ;egj;k are  -functions. If we set

hj;� D
X

k�djC1

gj;k.x; y/
�aj;0.x/

t

� k
dj
�1� 1

dj ;

hj;C D
X

k�djnj

egj;k.x; y/� t

bj;0.x/y
ˇj

� k
dj
�nj

;

then we obtain (43) with rj;� D�1� 1
dj

and

hj;0 D

djX
kD1

gj;k.x; y/
�aj;0.x/

t

�k=dj
C

djnj�1X
kD0

egj;k.x; y/� t

bj;0.x/y
ˇj

�k=dj
:

Hence, we can write

j;�.x; y; t/D
� t

aj;0.x/

�rj;�
hj;�.x; y; t/.log t /sj ei�j t ;

j;0.x; y; t/D hj;0.x; y; t/.log t /sj ei�j t ;

j;C.x; y; t/D
� t

bj;0.x/y
ˇj

�nj
hj;C.x; y; t/.log t /sj ei�j t ;

and

Tj .x; y/D Tj;�.x; y/C Tj;0.x; y/C Tj;C.x; y/;

where one obtains Tj;�, Tj;0, and Tj;C from Tj by replacing j with j;�, j;0, and
j;C, respectively.

To handle Tj;�, note that, since rj;� <�1, we can use the additivity relationZ bj .x;y/

aj .x;y/

j;�.x; y; t/dt D
Z C1
aj .x;y/

j;�.x; y; t/dt �
Z C1
bj .x;y/

j;�.x; y; t/dt:
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Therefore, we can replace Tj;� by a sum of two prepared generators for C exp.A� /

whose � -functions are defined by integrals withC1 as the upper limit of integration.

To handle Tj;0, compute
R bj .x;y/
aj .x;y/

j;0.x; y; t/dt by integrating by parts, where

one differentiates hj;0.x; y; t/.log t /sj and integrates ei�j t . This has the effect of
replacing Tj;0.x; y/ with a sum of terms that are either prepared generators for
C

exp
naive.A� / or are of the same form as Tj;0 but with the powers of t in hj;0 reduced by
1. By repeating this strategy finitely many times, we reduce to the case in which all
powers of t in hj;0 are less than �1, which can then be handled as we did for Tj;�.

It remains to handle Tj;C. Recall that� t

bj;0.x/y
ˇj

�nj
hj;C.x; y; t/.log t /sj

D
� C1X
kDnjdj

egj;k.x; y/� t

bj;0.x/y
ˇj

�k=dj �
.log t /sj : (45)

Differentiating the right-hand side of (45) with respect to t gives

1

bj;0.x/y
ˇj

�� C1X
kDnjdj

k

dj
egj;k.x; y/� t

bj;0.x/y
ˇj

�k=dj�1�
.log t /sj

C sj

� C1X
kDnjdj

egj;k.x; y/� t

bj;0.x/y
ˇj

�k=dj�1�
.log t /sj�1

�
:

Therefore, if we compute
R bj .x;y/
aj .x;y/

j;C.x; y; t/dt by integrating by parts nj times,

where we begin by differentiating the left-hand side of (45) and integrating ei�j t as
before, then we reduce to studying prepared generators for C exp.A� / of the form

T .x;y/D fj .x/y
pj�njˇj .logy/qj ei�j .x;y/

Z bj .x;y/

aj .x;y/

h.x;y; t/.log t /sei�j t dt;

where h is a  j;C-function and s is a rational number. Since h is bounded and the
length of the interval .aj .x; y/; bj .x; y// is of order yıj as y!C1 (see Defini-
tion 5.4 and Proposition 5.5), it follows that for each x 2…m.A/ there is a constant
C.x/ > 0 such that

T abs.x; y/� C.x/ypj�njˇjCıj .logy/qjCs:

Hence, by (42) we can conclude that T is superintegrable.

LEMMA 5.13
In the notation of Proposition 5.5, suppose that b 	 C1. If Tj is a prepared
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generator with the property that ˛j > 0, then we may write Tj as a finite sum of
prepared generators which are either superintegrable or in C

exp
naive.A� /.

Proof
We consider a generator Tj as in the statement of the lemma. In the notation of Propo-
sition 5.5, suppose first that bj <C1. By Remark 5.7(1), we have rj D 0.

Assume that

pj C ıj <�1:

Since hj is bounded by a constant and the length of the interval .aj .x; y/; bj .x; y//
is of order yıj as y!C1, it follows that for each x 2…m.A/ there is a constant
C.x/ > 0 such that

T abs
j .x; y/� C.x/ypjCıj .logy/qjCsj : (46)

So Tj is superintegrable, and we are done.
So now assume that pj C ıj ��1. Note that

@

@t

��aj;0.x/y˛j
t

�1=dj �
D�

1

dj

�aj;0.x/y˛j
t

�1=dj 1
t

and that

@

@t

�� t

bj;0.x/y
ˇj

�1=dj �
D

1

dj

� t

bj;0.x/y
ˇj

�1=dj 1
t
:

Write hj DHj ı j , where Hj .X1; : : : ;XN ; Y; T1; T2/ is a power series converging
in a neighborhood of the closure of the image of j . Thus, we can factor out 1=t every
time we differentiate the expression hj .x; y; t/.log t /sj with respect to t . Moreover,
the factor 1=t may be written as

1

t
D

1

aj;0.x/y
˛j

�aj;0.x/y˛j
t

�
:

Therefore, if we compute �j .x; y; t/ by integrating by parts, where one integrates
ei�j t and differentiates hj .x; y; t/.log t /sj , we can express Tj as a finite sum of terms,
each of which is either in C

exp
naive.A� / or is of the same form as Tj , but with pj replaced

by pj � ˛j . Therefore, by repeating this strategy finitely many times, we sufficiently
decrease the value of pj in order to reduce to the case in which pj C ıj < �1, and
we are done for the case bj <C1.

It remains to consider the case bj 	 C1. By Remark 5.7(1), rj < �1 and hj
is a  j;�-function. This case can be handled very similarly to the previous case: one
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decreases the value of pj by repeatedly integrating by parts in order to additionally
assume that

pj <�1:

Since

� abs
j .x; y/�M

Z C1
1

t rj .log t /sj dt <C1;

where jhj j �M , this shows that the analogue of (46) is now

T abs
j .x; y/� C.x/ypj .logy/qj :

Hence, Tj is superintegrable.

We now complete the proof of Proposition 5.9.

Proof of Proposition 5.9
Let b 	C1, and let Tj be as in Proposition 5.5. If Tj is either superintegrable or in
C

exp
naive.A� /, then we are done. Otherwise, thanks to the lemmas above we may assume

that ˛j D ˇj D 0. (Recall that if bj 	C1, we have set bj;0 	C1 and ˇj D 0.) To
see this, if ˛j > 0, then apply Lemma 5.13. Suppose now that ˛j D 0. If bj 	C1
or ˇj D 0, then we are done. Otherwise, apply Lemma 5.12 and again Lemma 5.13.

We first establish the following claim: up to replacing a.x/ with some analytic
subanalyticea.x/� a.x/ and up to further partitioning with respect to the variables x,
we may assume that, for all j 2 J ,
(1) jaj .x; y/� aj;0.x/j � 1 and jbj .x; y/� bj;0.x/j � 1 on A� , and
(2) the function hj extends to a  j -function with  j now defined on the set

fAj D ®.x; y; t/ W .x; y/ 2A� ;
min

®
aj;0.x/; aj .x; y/

¯
< t <max

®
bj;0.x/; bj .x; y/

¯¯
:

To establish the claim, for each j 2 J , fix a subanalytic neighborhood Uj of the
closure of  j .Aj / such that hj DHj ı j for some power series Hj centered at the
origin and converging on Uj . Recall that every  is bounded and subanalytic. Hence,
for each  -unit u 2 ¹uaj ; ubj ; ucj º, limy!C1 u.x;y/ is a well-defined subanalytic
function of x (which may be supposed to be analytic, up to refining the partition) and,
therefore, may be considered as a part of the corresponding coefficient function in
¹aj;0; bj;0; cj;0º. We may therefore assume that, for each u 2 ¹uaj ; ubj ; ucj º,

lim
y!C1

u.x;y/D 1:
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In particular, limy!C1 aj .x; y/ D aj;0.x/ and limy!C1 bj .x; y/ D bj;0.x/.
Hence, for each x 2 …m.A/ there exists a real number ea.x/ � a.x/ such that, for
all y >ea.x/ and all j 2 J , we have that jaj .x; y/ � aj;0.x/j � 1, that jbj .x; y/ �
bj;0.x/j � 1, and that  j .eAj /� Uj . By definable choice (see, e.g., [30, Chapter 6]),
we may takeea to be a subanalytic function of x (and we may supposeea to be analytic,
up to refining the partition). This establishes the claim.

We may therefore partition A� according to the conditions a.x/ < y <ea.x/ andea.x/ < y. We are done on the subset of A� defined as a.x/ < y <ea.x/ (as in the
case of b <C1 treated in Proposition 5.5), so it suffices to consider the subset of A�
defined by y >ea.x/. Therefore, up to changing notation, we may simply assume thatea.x/D a.x/.

Now, writeZ bj .x;y/

aj .x;y/

j .x; y; t/dt D
Z bj;0.x/

aj;0.x/

j .x; y; t/dt �
Z aj .x;y/

aj;0.x/

j .x; y; t/dt

C

Z bj .x;y/

bj;0.x/

j .x; y; t/dt:

(Note that when bj 	C1 the last term of the sum does not appear.) We remark thatZ aj .x;y/

aj;0.x/

j .x; y; t/dt

D ei�j aj;0.x/
Z aj .x;y/

aj;0.x/

t rj hj .x; y; t/.log t /sj ei�j .t�aj;0.x// dt;

and thanks to the claim, jaj .x; y/ � aj;0.x/j � 1 on A� . Hence, ei�j .t�aj;0.x// is a
complex-valued subanalytic function (see Definition 2.3) over its domain of integra-
tion. So the integral on the right-hand side of the above equation is a complex-valued
constructible function on A� , because C is stable under integration (see [8], [9]).

This shows that .x; y/ 7!
R aj .x;y/
aj;0.x/

j .x; y; t/dt is in C
exp
naive.A� /. For similar reasons,

.x; y/ 7!
R bj .x;y/
bj;0.x/

j .x; y; t/dt is also in C
exp
naive.A� /.

We are now ready to finish the proof of the preparation theorem. In view of Propo-
sition 5.9, it only remains to show that those generators for which the variable y does
not appear in the integration limits of the � -function can be expressed as finite sums
of generators which are either superintegrable or naive in y. Moreover, we need to
ensure that Theorem 5.2(2b) is also satisfied.

Proof of Theorem 5.2
Let b 	 C1, and consider a generator Tj as in the statement of Proposition 5.9,
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which is neither superintegrable nor in C
exp
naive.A� /. Thus, Tj is such that �j .x; y/DR bj;0.x/

aj;0.x/
j .x; y; t/dt (where we also allow the possibility bj;0 	 C1), and since

˛j D ˇj D 0, the variable y now only appears in the component .a.x/
y
/1=d of  j (see

(24), (25)). Hence, we can now expand hj .x; y; t/ as a power series in the variable
.a.x/=y/1=d with coefficients in the variables .x; t/. The powers of y which appear
in Tj are thus of the form pj �

n
d

, where n is the summation index in the power series
expansion of hj . Since finitely many of such powers are greater than or equal to �1,
we can write Tj as a sum of finitely many terms that are naive in y plus a final term
of the form

fj .x/y
p.logy/qj ei�j .x;y/

Z bj;0.x/

aj;0.x/

t rj h.x;y; t/.log t /sj ei�j t dt

for some rational p < �1 and  j -function h. This final term is clearly superinte-
grable, since h is bounded. Summing up, we have written f ı P� .x; y/ as a finite
sum of generators which are either superintegrable or of the form

Tj .x; y/D fj .x/y
rj .logy/sj ei�j .x;y/; (47)

where fj 2 C exp.…m.A//, rj 2Q\ Œ�1;C1/, sj 2N, and �j 2 S.A� /.
It remains to prove Theorem 5.2(2b). Let J 0 D ¹j W Tj is as in (47)º, and apply

Proposition 3.10 to the collection ¹�j W j 2 J 0º. Focus on a cell A0 D ¹.x; y/ W x 2
…m.A

0/; a0.x/ < � 0.y � � 0.x//�
0

< b0.x/º � A� that this constructs, along with its
associated center � 0 and map  0 given by

 0.x; y/D
�
c01.x/; : : : ; c

0
N 0.x/;

�a0.x/
y

�1=d 0
;
� y

b0.x/

�1=d 0�
if b0 <C1;

and  0.x; y/D
�
c01.x/; : : : ; c

0
N 0.x/;

�a0.x/
y

�1=d 0�
if b0 	C1

on

A0� 0 D
®
.x; y/ W x 2…m.A

0/; a0.x/ < y < b0.x/
¯
:

First suppose that � 0 ¤ 0. Then the closure of ¹y=� 0.x/ W .x; y/ 2 A0º is a com-
pact subset of .0;C1/, so each of the fibers A0x is bounded above. We are then done
on A0 by Remark 5.7(2).

Now suppose that � 0 D 0. Because A0x � .1;C1/ for each x, it follows that � 0 D
	 0 D 1. Thus, A0 D ¹.x; y/ W x 2…m.A

0/; a0.x/ < y < b0.x/º with 1 � a � a0 < b0.
When b0 <C1, we are again done on A0, so assume that b0 	C1. We may assume
that the list of functions c01; : : : ; c

0
N 0 contains c1; : : : ; cN and also .a.x/=a0.x//1=d .

We may also assume that d 0 was chosen so that 1=d is an integer multiple of 1=d 0.
So because
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y

�1=d
D
� a.x/
a0.x/

�1=d�a0.x/
y

�1=d
;

it follows that each component of  is a  0-function. Therefore, to simplify notation,
we may simply assume that A0 DA� and that  0 D .

Hence, on A� we can write, for all j 2 J 0,

�j .x; y/D �j;0.x/y
lj uj .x; y/;

where �j;0 2 S.…m.A// is analytic, lj 2Q (an integer multiple of 1=d ), and uj is a
 -unit. We expand the unit uj with respect to the variable .a.x/

y
/1=d and multiply by

ylj , so that we can rewrite the above equation as

�j .x; y/D �j;C.x; y/C �j;�.x; y/;

where �j;C 2 S.…m.A//Œy
1=d � and �j;�.x; y/ D �j;0.x/.

a.x/
y
/1=deuj .x; y/, for

some  -unit euj . Up to refining the partition with respect to the variables x, we may
assume that j�j;0j is either bounded from above or bounded away from zero. In either
of the two cases, �j;� is a  -function. This is clear in the first case. In the second
case, up to further partitioning the cell (as we have done for example in the proof
of Proposition 5.9), we may suppose that y > a.x/.�j;0.x//d . We then modify  
accordingly, by adding the bounded function . 1

�j;0
/d to c1.x/; : : : ; cN .x/ and consid-

ering the function .a.x/.�j;0.x//
d

y
/1=d as the last component of  .

Therefore, exp.i�j;�/ is a complex-valued subanalytic function (see Defini-
tion 2.3) which can be expanded as a power series F in the variable y�1=d with
analytic functions of x as coefficients. Let Kj 2 N be such that, in the notation of

(47), rj �
Kj
d
<�1. We split the power series F into a polynomial part, by summing

up to Kj , and a rest G. Therefore, we can replace Tj by a finite sum of terms of the
form appearing in (47), but with the further property that �j 2 S.…m.A//Œy

1=d �, plus
a final superintegrable term (corresponding to the rest G of the series).

Summing up, we have partitioned the index set J as J int [ J naive, where Tj is
superintegrable for every j 2 J int and, for all j 2 J naive, Tj is of the form in (47) with
�j 2 S.…m.A//Œy

1=d �. Now, by writing

ei�j .x;y/ D ei.�j .x;y/��j .x;0//ei�j .x;0/

and absorbing ei�j .x;0/ into fj .x/, we may assume that �j .x; 0/ D 0 for all j 2
J naive.

By further partitioning in x, we may also assume that, for all j; k 2 J naive, y 7!
�j .x; y/ and y 7! �k.x; y/ either define the same polynomial function for all x 2
…m.A/ or define different polynomial functions for all x 2…m.A/. Therefore, by
summing over terms for j 2 J naive with equal tuples .rj ; sj ; �j .x; y//, we may
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assume that these tuples are distinct. We have thus completed the proof of Theo-
rem 5.2.

6. Proof of Theorem 2.20
In this section we complete the proof of Theorem 2.20 using Proposition 6.5(3) below,
which states that, when we denote by f the function

P
j2J cj eipj .t/, there exists a

real number " > 0 such that the set V" D ¹t 2 Œ0;C1/ W jf .t/j � "º is not too sparse.
To prove Proposition 6.5(3) let us first introduce a definition and notation. In what
follows the notation vol` stands for the Lebesgue measure in the corresponding space
R`, ` � 1. All sets and maps involved with this notation are tacitly assumed to be
Lebesgue measurable.

Definition 6.1
Let ¹xº WD x � bxc denote the fractional part of the real number x, and let p D
.p1; : : : ; p`/ W Œ0;C1/! R` be a map. If I1; : : : ; I` � R are bounded intervals with
nonempty interior, we denote by I the box

Q`
jD1 Ij . For T � 0 we let

Wp;I;T WD
®
t 2 Œ0; T � W

®
p.t/

¯
2 I

¯
;

where ¹p.t/º denotes the tuple .¹p1.t/º; : : : ; ¹p`.t/º/.
The map p is said to be continuously uniformly distributed modulo 1 (c.u.d. mod

1) if, for every box I � Œ0; 1/`,

lim
T!C1

vol1.Wp;I;T /

T
D vol`.I /:

Remark 6.2
By [34] and [18, Corollary 9.1], a polynomial map p D .p1; : : : ; p`/ is c.u.d. mod
1 provided that no nontrivial linear combination over Z of the polynomials pj is
constant.

LEMMA 6.3
Let p W Œ0;C1/!R` be a c.u.d. mod 1 map, let I � Œ0; 1/` be a box, and let

Wp;I WD
®
t 2R W

®
p.t/

¯
2 I

¯
:

Then for all sufficiently large k 2N,

vol1
�
Wp;I \ Œ2

k; 2kC1�
�
� 2k�1 vol`.I / and

Z
Wp;I

dt

t
DC1:

Proof
Let us denote vol`.I / by s. By definition there exists T0 � 0 such that, for every
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T � T0,

vol1.Wp;I;T / 2
h
T
5s

6
;T
7s

6

i
:

It follows that, for any k 2N such that 2k � T0,

vol1.Wp;I /\ Œ2
k; 2kC1�D vol1.Wp;I;2kC1 nWp;I;2k /� s

5

6
2kC1 � s

7

6
2k D s2k�1:

Therefore, denoting by k0 the smallest integer k such that 2k � T0, we haveZ
Wp;I

dt

t
�

Z
Wp;I\Œ2

k0 ;C1/

dt

t
D

C1X
kDk0

Z
Wp;I\Œ2k ;2kC1�

dt

t
� s

C1X
kDk0

2k�1

2kC1
DC1;

which concludes the proof.

Remark 6.4
Let c1; : : : ; cn 2C n ¹0º, and let p1.t/; : : : ; pn.t/ 2RŒt � be distinct polynomials such
that p1.0/ D � � � D pn.0/ D 0 and such that at least one of them is not constantly
zero. Consider the function f .t/ D

Pn
jD1 cj eipj .t/. Extract from the family of the

polynomials pj a basis of the Q-vector space spanned by this family. Without loss of
generality, we may suppose that such a basis is given by .p1; : : : ; p`/. Write

pk D rk;1p1C � � � C rk;`p`; k D `C 1; : : : ; n;

with rk;j 2 Q for k D `C 1; : : : ; n; j D 1; : : : ; `. If, for j D 1; : : : ; `, we denote by
�j the least common multiple of the denominators of the nonzero rational numbers
among r`C1;j ; : : : ; rn;j and we let epj D pj =2��j , then we have, for k D `C1; : : : ; n,

pk D 2�sk;1ep1C � � � C 2�sk;`ep`;
where sk;1; : : : ; sk;` 2 Z and the family of polynomials .ep1; : : : ;ep`/ is independent
over Z. To sum up, one can write

f .t/D P.e2� iep1.t/; : : : ; e2� iep`.t//;
where P is a Laurent polynomial in CŒX1; : : : ;X`;

1
X1
; : : : ; 1

X`
� which contains at

least `� 1 monomials of the form cjX

j
j , with cj ¤ 0 and �j 2 N. Therefore, P is

not a constant. (Note that we have not assumed that the function f is not constant.)
Now since the family .ep1; : : : ;ep`/ is independent over Z and since p1.0/D � � � D

p`.0/ D 0, no nontrivial Z-linear combination of ep1; : : : ;ep` is constant. Thus, by
Remark 6.2, the map pD .ep1; : : : ;ep`/ is c.u.d. mod 1.
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PROPOSITION 6.5
Let f W R!C be given by a finite sum

f .t/D
X
j2J

cj eipj .t/;

where the cj 2C n ¹0º and the pj .t/ are distinct polynomials in RŒt �, vanishing at 0.
Then one can find " > 0 such that
(1) There exist two sequences .t0;n/n2N and .t1;n/n2N, which both tend to C1,

such that 8n 2N, jf .t0;n/� f .t1;n/j � ". In particular, limt!C1 f .t/ exists
if and only if pj D 0 for all j 2 J (i.e., if and only if f is a constant func-
tion).

(2) There exists a sequence .tn/n2N which tends to C1 such that, for all n � 0,
jf .tn/j � ".

(3)
R
V"

1
t

dt DC1, where V" D ¹t 2 Œ1;C1/ W jf .t/j � "º.

Proof
We may assume without loss of generality that J is ¹1; : : : ; nº. By Remark 6.4, one
can write f .t/D P.e2� iep1.t/; : : : ; e2� iep`.t//, where P is a nonconstant Laurent poly-
nomial in RŒX1; : : : ;X`;

1
X1
; : : : ; 1

X`
� and .ep1; : : : ;ep`/ is a c.u.d. mod 1 map. Set

a1 D e2� i˛1 ; b1 D e2� iˇ1 ; : : : ; a` D e2� i˛` ; b` D e2� iˇ` , where ˛1; ˇ1; : : : ; ˛`; ˇ` 2
Œ0; 1/ are complex numbers such thatˇ̌

P.a1; : : : ; a`/�P.b1; : : : ; b`/
ˇ̌
� 3";

for some " > 0, and let us then consider the two sets

AD
°
t 2R W

�®ep1.t/¯; : : : ;®ep`.t/¯� 2 Ỳ
jD1

Aj

±
;

B D
°
t 2R W

�®ep1.t/¯; : : : ;®ep`.t/¯� 2 nY
jD1

B`

±
;

where Aj � Œ0; 1/ is an interval centered at ˛j and Bj � Œ0; 1/ is an interval cen-
tered at ˇj . If we denote by h.t/ the map .eiep1.t/; : : : ; eiep`.t//, since .ep1; : : : ;ep`/ is a
c.u.d. mod 1 map, by the continuity of h and P , by taking our intervals Aj and Bj
sufficiently small, one can find two sequences .t0;n/n2N 2 A and .t1;n/n2N 2 B both
tending to C1 such that

8n 2N;
ˇ̌
P
�
h.t0;n/

�
�P.a1; : : : ; a`/

ˇ̌
� " andˇ̌

P
�
h.t1;n/

�
�P.b1; : : : ; b`/

ˇ̌
� ":
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This gives that, 8n 2N, jf .t0;n/�f .t1;n/j � " and proves (1). To prove (2) we repeat
the same argument as in (1): we choose complex numbers a1 D e2� i˛1 ; : : : ; a` D

e2� i˛` , with ˛1 : : : ; ˛`;2 Œ0; 1/, such that jP.a1; : : : ; a`/j � 2", and we define as above
the corresponding sets A1; : : : ;A` and A with the property that, when t 2A, jf .t/�
P.a1; : : : ; a`/j � ". One thus has that, for every t 2 A, jf .t/j � ". However, A cer-
tainly contains a sequence .tn/n2N which tends to C1, since .ep1; : : : ;ep`/ is a c.u.d.
mod 1 map. This proves (2).

Now, since the set A defined above is such that A� V" and since .ep1; : : : ;ep`/ is
c.u.d. mod 1, by Lemma 6.3 we have proved (3).

We now complete the proof of Theorem 2.20.

Proof of Theorem 2.20
Let f 2 C exp.X � R/, and apply Theorem 5.2 to f . This produces a finite partition
A of X �R into cells over Rm. Consider one such cell A 2A that is open over Rm,
and let � be a center for A. Write

f ıP� .x; y/D
X
j2J int

Tj .x; y/C
X

j2J naive

Tj .x; y/ on A� :

Therefore,

f D
X
j2J int

Tj ıP
�1
� C

X
j2J naive

Tj ıP
�1
� on A:

If J naive D ;, then we are done. So suppose that J naive ¤ ;, which implies that A� is
unbounded above (i.e., b 	C1, in the notation of Definition 3.4).

Recall from Remark 3.14(1) that

@yP� .y/ WD
@P�;mC1

@y
.x;y/D �	y��1

and that 	 � 1 equals either 0 or �2. Note that

Int
�
Tj ıP

�1
� ;…m.A/

�
D Int

�
Tj @yP� ;…m.A/

�
; 8j 2 J:

For every j 2 J naive, in the notation of (21), we have

Tj .x; y/@yP� .y/D �	fj .x/y
rjC��1.logy/sj ei�j .x;y/; (48)

which is integrable in y if and only if fj .x/D 0 or rj C 	 < 0. Therefore, by defining

J Int WD J int [ ¹j 2 J naive W rj C 	 < 0º;
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we see that, for each j 2 J ,

Int
�
Tj @yP� ;…m.A/

�
D

´
…m.A/ if j 2 J Int;

¹x 2…m.A/ W fj .x/D 0º if j 2 J naive WD J n J Int:

Let

g.x;y/D
X
j2J Int

Tj ıP
�1
� .x; y/; for all .x; y/ 2A;

H D
\

j2J naive

®
x 2…m.A/ W fj .x/D 0

¯
:

Note that, by taking the sum of the squares of the real and imaginary parts of fj (see
Remark 2.14(2)), we can writeH D ¹x 2…m.A/ W h.x/D 0º, for some h 2 C exp.X/.

It is clear that

Int
�
g;…m.A/

�
D…m.A/:

It remains to show that

Int
�
f �A;…m.A/

�
DH

and

f .x;y/D g.x;y/ for all .x; y/ 2A with x 2 Int
�
f �A;…m.A/

�
:

Clearly,

f .x;y/D g.x;y/ for all .x; y/ 2A with x 2H;

so H � Int.f �A;…m.A//.
To prove the other inclusion, we show that if x … H , then x …

Int.
P
j2J naive Tj @yP� ;…m.A// D Int.

P
j2J naive Tj ı P

�1
�
;…m.A//, and hence x …

Int.f � A;…m.A//. Fix x 2 …m.A/ n H . Then the set J WD ¹j 2 J naive W

fj .x/¤ 0º � J
naive is nonempty (see (48)). Recall that the tuples ¹.rj � 	 � 1; sj ;

�j .x; y//ºj2J are distinct and that �j WD rj � 	 � 1��1 for all j 2 J . Let

E D
®
.�; s/ 2Q�N W 9j 2 J.�j ; sj /D .�; s/

¯
;

and if .�; s/ 2E; let E.
;s/ D
®
j 2 J W .�j ; sj /D .�; s/

¯
:

Write

F.x;y/D
X
j2J

Tj @yP� .x; y/

D
X

.
;s/2E

y
.logy/s
� X
j2E.�;s/

�	fj .x/e
i�j .x;y/

�
:
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Up to summing like terms, we may suppose that all polynomials �j in the previous
sum are distinct. Let .�0; s0/ be the lexicographic maximum of E , and let

G.x;y/D
X

j2E.�0;s0/

�	fj .x/e
i�j .x;y/:

By applying Proposition 6.5(3) to the function y 7! G.x;y/, we obtain " > 0
such that, for all y 2 V", F.x;y/ can be written as

y
0.logy/s0G.x;y/
h
1C

X
.
;s/2En¹.
0;s0/º

y
�
0.logy/s�s0

�G.x;y/�1
� X
j2E.�;s/

�	fj .x/e
i�j .x;y/

�i
:

Note that there existsM > 0 such that for all y 2 V"\ ŒM;C1/ the square bracket in
the previous equation is bounded from below by some positive constantK . Therefore,Z C1

M

ˇ̌
F.x;y/

ˇ̌
dy �

Z
V"\ŒM;C1/

ˇ̌
F.x;y/

ˇ̌
dy

� "K

Z
V"\ŒM;C1/

y
0.logy/s0 dy � "K
Z
V"\ŒM;C1/

1

y
dy:

However, by Proposition 6.5(3) the last integral on the right diverges. Hence, x …
Int.F;…m.A//, and we are done.

7. Asymptotic expansions and limits
In this section we prove a series of consequences of our main results and their proofs.
In Section 7.1 we prove that functions in C

exp
naive have convergent asymptotic expan-

sions of a certain form. We use this result to produce in Section 7.2 two examples of
functions that are in C exp but not in C

exp
naive. In Section 7.3 we prove that C exp is stable

under taking pointwise limits.

7.1. Asymptotic expansions of naive functions

Definition 7.1
A collection G D .gn/n2N of functions gn W .0;C1/!R with strictly positive germ
at C1 is an asymptotic scale at C1 if, for all n 2 N, limy!C1

gnC1.y/

gn.y/
D 0.

A C-vector space A of functions a W R! C is a space of coefficients if for every
a 2A n ¹0º there are " > 0 and a sequence .yn/n2N, with limn!C1 yn DC1, such
that, 8n 2N, ja.yn/j> ".

Given a function f W .0;C1/!C, an asymptotic scale G , and a space of coeffi-
cients A, we say that f has a .G ;A/-asymptotic expansion atC1 if there are y0 > 0
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and a sequence .an.y//n2N �A such that

8N 2N 9C > 0 such that, 8y > y0;
ˇ̌̌
f .y/�

NX
nD0

an.y/gn.y/
ˇ̌̌
� CgNC1.y/:

LEMMA 7.2
If a function f admits a .G ;A/-asymptotic expansion, then such an expansion is
unique; that is, the sequence .an.y//n2N is uniquely determined.

Proof
Suppose that .ean.y//n2N is another sequence of coefficients. Supposing inductively
that an Dean for all n <N , we have

ˇ̌�
aN .y/�eaN .y/�gN .y/ˇ̌D ˇ̌̌ NX

nD0

an.y/gn.y/�

NX
nD0

ean.y/gn.y/ˇ̌̌

�
ˇ̌̌
f .y/�

NX
nD0

an.y/gn.y/
ˇ̌̌
C
ˇ̌̌
f .y/�

NX
nD0

ean.y/gn.y/ˇ̌̌
� C0gNC1.y/;

for some constant C0 > 0 and for y sufficiently large. Dividing by gN .y/, we obtain
that limy!C1jaN .y/ �eaN .y/j D 0. Now, the function a.y/ WD aN .y/ �eaN .y/
belongs to A, and if a.y/ is not identically zero, then a.y/ is bounded away from
zero on some sequence of points going to C1. Hence, the only way for a.y/ to tend
to zero is if a.y/ is identically zero.

PROPOSITION 7.3
Let f 2 C

exp
naive.R/. Then f has a .G ;A/-asymptotic expansion, where

� G D .yrn.logy/sn/n2N with rn 2 Q, sn 2 N, and .rn; sn/n2N a decreasing
sequence of lexicographically ordered pairs;

� A D ¹E.y/ D
P
j2J cj eipj .y

1=d / W .cj /j2J 2 CJ º, for some d 2 N, some
finite set J �N, and for distinct polynomials pj .y/ 2RŒy� with pj .0/D 0.

Moreover, if En.y/D
P
j2J cj;neipj .y

1=d / are the coefficients of such an expansion,
then for all sufficiently large y and for all j 2 J , the series

fj .y/D
X
n2N

cj;ny
rn.logy/sn (49)

will converge absolutely and

f .y/D
X
n2N

En.y/y
rn.logy/sn :
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Proof
Note first that if G and A are as in the statement, then G is an asymptotic scale, and by
Proposition 6.5(2), A is indeed a space of coefficients. By Remark 3.1, if g 2 S.R/,
then, in the notation of (11), we have

eig.y/ DG.y/eip.y
1
d /;

where G.y/D eig0.y/ is a complex-valued subanalytic function (see Definition 2.3),
since g0 is bounded. Moreover, in the notation of (10),

logg.y/D log cC r logy C h.y/;

where h.y/D log.1CH.y�
1
d // is in S.Œy0;C1// for some sufficiently large y0.

Hence, it is easy to see that if f 2 C
exp
naive.R/, then we may assume that, for y

sufficiently large,

f .y/D
X
j2J

fj .y/e
ipj .y

1
d /; (50)

where J is a finite set, fj is a complex-valued constructible function, d 2 N, and
¹pj .y/ W j 2 J º � RŒy� is a collection of distinct polynomials such that pj .0/D 0.
Moreover, there exists a finite set K such that each fj is of the form

fj .y/D
X
k2K

hj;k.y/.logy/sj;k ;

where sj;k 2N and hj;k is a complex-valued subanalytic function.
Let us prove that fj is indeed an absolutely convergent series. It is easy to see

that Remark 3.1 also holds for complex-valued subanalytic functions (where now
c 2C andH is a convergent power series with complex coefficients). Applying again
Remark 3.1 to each hj;k , for y sufficiently large we can write

fj .y/D
X
k2K

bj;ky
rj;k .logy/sj;k

�
1CHj;k.y

� 1
d /
�
; (51)

where bj;k 2C, rj;k 2Q is an integer multiple of 1
d

, and Hj;k.y/D
P
m2N aj;k;my

m

is an absolutely convergent power series with complex coefficients and such that
Hj;k.0/D 0. Hence, up to reorganizing the sum in (51), we have proved (49).

Now, setting rj;k;m D rj;k �
m
d

, we can write

f .y/D
X

.j;k/2J�K
m2N

bj;kaj;k;my
rj;k;m.logy/sj;keipj .y

1
d /:



OSCILLATORY AND SUBANALYTIC FUNCTIONS 51

Let

I D
®
.r; s/ 2Q�N W 9j 2 J;9k 2K;9m 2N such that .rj;k;m; sj;k/D .r; s/

¯
;

and if .r; s/ 2 I; then let I.r;s/ D
®
.j; k;m/ 2 J �K �N W .rj;k;m; sj;k/D .r; s/

¯
:

We can write

f .y/D
X
.r;s/2I

yr .logy/sE.r;s/.y/;

where E.r;s/.y/ D
P
.j;k;m/2I.r;s/

bj;kaj;k;meipj .y
1
d /. Note that for every .r; s/ 2 I

the set I.r;s/ is finite, so E.r;s/ is a finite sum of exponentials. Moreover, if I0 is the
set of all r 2 Q such that there exists s 2 N with .r; s/ 2 I , then we have that I0 is
bounded from above (by max.j;k/2J�Krj;k) and for every r 2 I0 there are finitely
many s 2 N such that .r; s/ 2 I . (In fact, the cardinality of the set of all s’s such
that there exists r 2 I0 with .r; s/ 2 I is uniformly bounded by the product of the
cardinalities of J and K .) Hence, with respect to the lexicographic order, I has the
same order type as !, and we can fix a decreasing bijection N 3 n 7! .rn; sn/ D

.r; s/ 2 I .
Let us thus rename En.y/DE.rn;sn/.y/. We have proved that, for y sufficiently

large,

f .y/D
X
n2N

En.y/y
rn.logy/sn :

In particular, f indeed has a .G ;A/-asymptotic expansion.

7.2. Two functions which are in C exp.R/ but not in C
exp
naive.R/

Example 7.4
Consider the function f .y/D e�jyj.

Consider the Fourier transform of f :

Of .y/D

Z
R

e�2� ixye�jxj dx:

It is well known that Of is a semialgebraic integrable function, namely, Of .y/ D
2

1C4�2y2
(see, e.g., [13]). Since we can compute f as the inverse Fourier transform

of Of and since Of is semialgebraic, we have that f belongs to the class C exp.R/. It
follows from Remark 2.8 that if g 2 S.R/, then e�jg.y/j 2 C exp.R/. (In particular,
e�y

2
2 C exp.R/.)
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CLAIM

The function f .y/D e�jyj is not in C
exp
naive.R/.

Proof
Suppose for a contradiction that f 2 C

exp
naive.R/. By Proposition 7.3 we may write f .y/

as the sum of a convergent series

f .y/D
X
n2N

En.y/y
rn.logy/sn

for all sufficiently large y. Since the germ of f atC1 is nonzero, this series contains
a nonzero term. Choose the least n0 2 N such that En0.y/ is not identically 0. Thus,
there exists a constant C > 0 such thatˇ̌

f .y/�En0.y/y
rn0 .logy/sn0

ˇ̌
� Cyrn0C1.logy/sn0C1

for all sufficiently large y. Since f .y/

y
rn0 .logy/sn0

and y
rn0C1 .logy/

sn0C1

y
rn0 .logy/sn0

both tend to

0 as y !C1, dividing both sides of this inequality by yrn0 .logy/sn0 and letting
y tend to C1 gives limy!C1En0.y/ D 0, which contradicts Proposition 6.5(2).

Example 7.5
Consider the sine integral Si W Œ0;C1/!R, which is defined by

Si.y/D
Z y

0

sin.t/

t
dt D

Z y

0

eit � e�it

2it
dt:

Clearly, Si 2 C exp.Œ0;C1//.

CLAIM

The function Si.y/ is not in C
exp
naive.Œ0;C1//.

Proof
Recall the classical asymptotic formula (see [1]):

Si.y/

�

2
�

cosy

y

X
k2N

.�1/k
.2k/Š

y2k
�

siny

y

X
k2N

.�1/k
.2kC 1/Š

y2kC1
:

Hence, Si.y/ has a .G ;A/-asymptotic expansion, with G and A as in the statement
of Proposition 7.3. However, in the notation of (49), the series F1.y/ DP
k2N.�1/

k .2k/Š

y2kC1
and F2.y/ D

P
k2N.�1/

k .2kC1/Š

y2kC2
are divergent. Therefore, by

Lemma 7.2 and Proposition 7.3, Si.y/ … C
exp
naive.Œ0;C1//.
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7.3. Pointwise limits

Definition 7.6
For any X �Rm and f W X �R!C, let

Lim.f;X/ WD
®
x 2X W lim

y!C1
f .x;y/ exists

¯
:

PROPOSITION 7.7
Let f 2 C exp.X � R/ for some subanalytic set X � Rm. There exist g;h 2 C exp.X/

such that

Lim.f;X/D
®
x 2X W h.x/D 0

¯
and such that, for all x 2 Lim.f;X/,

lim
y!C1

f .x;y/D g.x/:

Proof
Apply Theorem 5.2 to f .x;y/ with respect to y. Focus on one cell of the form

AD
®
.x; y/ W x 2…m.A/; y > a.x/

¯
:

Let

E D
®
.r; s/ 2Q�N W 9j 2 J.rj ; sj /D .r; s/

¯
;

and if .r; s/ 2E; let E.r;s/ D
®
j 2 J W .rj ; sj /D .r; s/

¯
:

(52)

The terms in the preparation involving yr.logy/s with r < 0 may be neglected since
they affect neither the existence of limy!C1 f .x;y/ nor its value when it exists. So
we may assume that f .x;y/ is naive in y with nonnegative powers of y in each term
of the preparation. Write f as the finite sum

f .x;y/D
X

.r;s/2E

yr.logy/s
� X
j2E.r;s/

fj .x/e
i�j .x;y/

�
; (53)

where each fj is in C exp.…m.A// and where we have that, for each .r; s/ and each
x 2…m.A/,

�j .x; y/D

mX
kD1

aj;k.x/y
k
d for j 2E.r;s/

is a family of distinct polynomials in y
1
d with subanalytic coefficients aj;k . By par-

titioning in x we may also assume that if there exist ej 2E.r;s/ and ex 2…m.A/ such
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that �ej .ex;y/D 0 for all y such that .ex;y/ 2A, then �ej .x; y/D 0 for all .x; y/ 2A.
(Note that there is at most one such ej 2 E.r;s/ such that �ej 	 0 because, for each

x 2…m.A/, .�j .x; y//j2J is a family of distinct polynomials in y
1
d .)

CLAIM

For each x 2…m.A/, x 2 Lim.f;…m.A// if and only if the following two conditions
hold:
(1) for each .r; s/ 2 E such that r > 0 or s > 0, we have that fj .x/D 0 for all

j 2E.r;s/;
(2) for all j 2E.0;0/ such that �j 6	 0, we have fj .x/D 0.

Proof
To prove the claim, fix x 2…m.A/. Observe that if conditions (1) and (2) hold, then
either f is identically 0, or else there exists j0 2 E.0;0/ such that f .x;y/D fj0.x/
for all y. Either way, limy!C1 f .x;y/ exists trivially.

To prove the converse, assume that x 2 Lim.f;…m.A//. Conditions (1) and (2)
clearly hold if fj .x/ D 0 for all j 2

S
.r;s/2EE.r;s/, so assume otherwise. Choose

.r0; s0/ maximal with respect to the lexicographical ordering such that fj .x/¤ 0 for
some j 2 E.r0;s0/. By Proposition 6.5(2), since limy!C1 f .x;y/ exists, it follows
that r0 D s0 D 0. Thus, condition (1) holds, and we have

f .x;y/D
X

j2E.0;0/

fj .x/e
i�j .x;y/

for all y. Proposition 6.5(1) now shows that condition (2) holds. This proves the
claim.

The claim easily implies the proposition. Indeed, define

hD
� X
.r;s/2E such that
r>0 or s>0

X
j2E.r;s/

jfj j
2
�
C
� X
j2E.0;0/ such that

�j 6�0

jfj j
2
�
I

define g D fj0 if there exists j0 2 E.0;0/ such that �j0 	 0, and define g D 0 other-
wise. Then g;h 2 C exp.…m.A//. The claim shows that

Lim
�
f �A;…m.A/

�
D
®
x 2A W h.x/D 0

¯
and that

f .x;y/D g.x/ for all .x; y/ 2A such that h.x/D 0:
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8. Parametric Lp-completeness and the Fourier–Plancherel transform
In this section we prove a parametric Lp-completeness theorem for C exp and use this
to show that C exp is closed under the Fourier–Plancherel transform.

Definition 8.1
Let X � Rm, let f W X �R! C be Lebesgue measurable, and let p 2 Œ1;C1�. For
each y 2 R, define fy W X ! C by fy.x/D f .x;y/ for all x 2 X . We say that the
family of functions .fy/y2R is Cauchy in Lp.X/ as y!C1 if .fy/y2R � Lp.X/
and for all " > 0 there exists y0 2R such that

kfy � fy0kp < " for all y;y0 � y0:

PROPOSITION 8.2
Let p 2 Œ1;C1� and f 2 C exp.X � R/ for a subanalytic set X � Rm, and suppose
that .fy/y2R is Cauchy in Lp.X/ as y ! C1. Then there exist g 2 C exp.X/ \

Lp.X/ and a subanalytic set X0 �X such that volm.X nX0/D 0,

lim
y!C1

kfy � gkp D 0;

and

lim
y!C1

f .x;y/D g.x/ for all x 2X0:

Before proving Proposition 8.2, we use it to show that C exp is closed under the
Fourier–Plancherel transform.

THEOREM 8.3
Let eF be the Fourier–Plancherel extension of the Fourier transform to L2.Rn/, as in
(6). Then, the image of C exp.Rn/\L2.Rn/ under eF is C exp.Rn/\L2.Rn/.

Proof
Let f 2 C exp.Rn/ \ L2.Rn/. We use coordinates x D .x1; : : : ; xn/ and t D

.t1; : : : ; tn/ on Rn. For each y 2R, define

By D
®
t 2Rn W jt j � y

¯
;

and observe that L2.By/� L1.By/ for each y (by the Cauchy–Schwartz inequality,
since voln.By/ <C1). So we may define F W RnC1!C by

F.x;y/ WD

Z
By

f .t/e�2� it �x dt D
Z
Rn

�By .t/f .t/e
�2� it �x dt; (54)



56 CLUCKERS, COMTE, MILLER, ROLIN, and SERVI

and we have that F 2 C exp.RnC1/, since C exp is closed under integration. The
extended Fourier transform eF .f / is the equivalence class of functions Œ bf � (with
respect to almost everywhere equivalence) that is defined by the condition

lim
y!C1

k bf �Fyk2 D 0:
Thus, .Fy/y2R is Cauchy in L2.Rn/ as y!C1, so by Proposition 8.2 we may fix
g 2 C exp.Rn/ such that

lim
y!C1

kg �Fyk2 D 0;

and hence Œ bf � D Œg�. This shows that the extended Fourier transform eF maps
C exp.Rn/ \ L2.Rn/ into C exp.Rn/ \ L2.Rn/. A completely symmetric argument,
where one simply replaces i with �i in (54), shows that the inverse extended Fourier
transform maps C exp.Rn/\L2.Rn/ into C exp.Rn/\L2.Rn/ as well, so C exp.Rn/\

L2.Rn/ is in fact the image of C exp.Rn/\L2.Rn/ under eF .

The remainder of this section is devoted to the proof of Proposition 8.2, which
requires us to develop a bit of machinery. This proof is somewhat similar to the proof
of Proposition 7.7, except we cannot rely on the facts about c.u.d. mod 1 maps quoted
in Remark 6.2. Instead, we need to adapt these facts to parametric families of maps
that are c.u.d. mod 1 in a certain uniform sense. We are not aware of a reference in
the literature on c.u.d. mod 1 maps that considers this parametric case, so this section
develops this material from scratch. We remark that the proofs of Lemma 8.6 and
Proposition 8.7 below use ideas found in the proofs of [18, Example 9.2 and the
closely interrelated Theorems 1.1, 2.1, 6.1, 6.2, 9.1, 9.2, and 9.9].

Let us first give the parametric version of Definition 6.1. For this, let X be a
nonempty set, and let  D . 1; : : : ; n/ W X � Œ0;C1/! Rn be a map. If I1; : : : ;
In � R are bounded intervals with nonempty interior, we denote by I the boxQ`
jD1 Ij , and for T � 0 and x 2X , we let

W x
 ;I;T WD

®
t 2 Œ0; T � W

®
 .x; t/

¯
2 I

¯
;

where ¹ .x; t/º denotes the vector of fractional parts .¹ 1.x; t/º; : : : ; ¹ n.x; t/º/ of
the components of  .

Definition 8.4
With this notation, we say that the map  is continuously uniformly distributed mod-
ulo 1 on X (abbreviated as c.u.d. mod 1 on X ) if, for every box I � Œ0; 1/n,

lim
T!C1

sup
x2X

vol1.W x
 ;I;T /

T
D voln.I /:
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The following remark is the parametric analogue of Lemma 6.3.

Remark 8.5
Suppose that  W X � Œ0;C1/! Rn is c.u.d. mod 1 on X . Then for each box I �
Œ0; 1/n, there exists k0 2N such that, for all k � k0 and for all x 2X ,

vol1
�®
t 2 Œ2k; 2kC1

�
W
®
 .x; t/

¯
2 I

¯
/� 2k�1 voln.I /:

This bound is proven just as Lemma 6.3, using the uniform limit in the parameter x
provided by Definition 8.4.

The following technical lemma will be used in the proof of the forthcoming
Proposition 8.7.

LEMMA 8.6
Define � WX � Œ0;C1/!R by

�.x; t/D

dX
jD0

�j .x/t
j ;

where d is a positive integer, the functions �0; : : : ; �d W X ! R are bounded, and
there exists " > 0 such that j�d .x/j > " for all x 2 X . Then the function ˆ W X �
Œ0;C1/!C defined by

ˆ.x;T /D

Z T

0

ei�.x;t/ dt

is bounded.

Proof
It suffices to show that for some suitable choice of T0 � 0 there exists a constant
C > 0 such that, for all .x;T / 2X � ŒT0;C1/,ˇ̌̌Z T

T0

ei�.x;t/ dt
ˇ̌̌
� C:

Define

f .x; t/ WD
�.x; t/

�d .x/
D td C

d�1X
jD0

�j .x/

�d .x/
tj ;

and observe that our assumed bounds on �0; : : : ; �n show that the coefficient functions

in x of the polynomial f .x; t/ are bounded. Therefore, by computing @f
@t

and @2f

@t2
and

factoring out their leading terms, we may fix T0 > 0 such that
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@f

@t
.x; t/D dtd�1u.x; t/ and

@2f

@t2
.x; t/D

´
0 if d D 1;

d.d � 1/td�2v.x; t/ if d > 1;

(55)

for some functions u.x; t/ and v.x; t/ (when d > 1) that take values in Œ1
2
; 3
2
� for all

.x; t/ 2X � ŒT0;C1/. Therefore, @f
@t
> 0 and @2f

@t2
� 0 onX � ŒT0;C1/, so for each

x 2X , the functions t 7! f .x; t/ and t 7! @f
@t
.x; t/ are, respectively, strictly increas-

ing and monotonically increasing on ŒT0;C1/. For each x 2 X , let t D g.x; s/ be
the inverse of s D f .x; t/, where t � T0 and s � f .x;T0/. For each T � T0, we can
perform the integral substitution

s D f .x; t/; ds D
@f

@t
.x; t/dt D

@f

@t

�
x;g.x; s/

�
dt

to write Z T

T0

ei�.x;t/ dt D
Z T

T0

ei�d .x/f .x;t/ dt

D

Z f .x;T /

f .x;T0/

ei�d .x/s

@f
@t
.x;g.x; s//

ds: (56)

The function

s 7!
1

@f
@t
.x;g.x; s//

is monotonically decreasing on Œf .x;T0/;C1/, so we can apply the second mean
value theorem for integrals to the real and complex parts of the integral (56). For the
real part, this givesZ f .x;T /

f .x;T0/

cos.�d .x/s/
@f
@t
.x;g.x; s//

ds D
1

@f
@t
.x;T0/

Z �.x;T /

f .x;T0/

cos
�
�d .x/s

�
ds (57)

for some �.x;T / 2 .f .x;T0/; f .x;T //. Since s 7! cos.�d .x/s/ has an antiderivative
with period 2�

j�d .x/j
and since 2�

j�d .x/j
� 2�

"
, the integral on the right-hand side of (57)

may be replaced with an integral over an interval of length at most 2�
"

. This, along

with the form of @f
@t

given in (55), shows that (57) is bounded. A nearly identical
calculation shows the same for the imaginary part of (56), and the lemma follows.

The following Proposition 8.7 is the parametric analogue of Remark 6.2, stating
that polynomials maps are c.u.d. mod 1when nontrivial Z-linear combinations of their
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components are nonconstant. For technical reasons, in the parametric case it is more
convenient to reduce to the situation of maps with monomial instead of polynomial
components.

PROPOSITION 8.7
Consider a map  D . 1; : : : ; n/ WX � Œ0;C1/!Rn, where X is a compact topo-
logical space and where, for each j 2 ¹1; : : : ; nº,

 j .x; t/D gj .x/t
j

for some continuous function gj W X ! R and positive integer �j . Assume that, for
each x 2 X , the functions t 7!  1.x; t/; : : : ; t 7!  n.x; t/ are linearly independent
over Q. Then  is c.u.d. mod 1 on X .

The following notation and observation will be used in the proof of Proposi-
tion 8.7.

Remark 8.8
Let � Dmax¹�1; : : : ; �nº, and for each k 2 ¹1; : : : ; �º, let Jk D ¹j 2 ¹1; : : : ; nº W �j D
kº. The assumption that t 7! 1.x; t/; : : : ; t 7! n.x; t/ are linearly independent over
Q for each x 2X is equivalent to saying that, for each k 2 ¹1; : : : ; �º and x 2X , the
family of real numbers .gj .x//j2Jk is linearly independent over Q.

Proof of Proposition 8.7
We will use the variables t , y D .y1; : : : ; yn/, and z D .z1; : : : ; zn/, and write dy
for dy1 ^ � � � ^ dyn. Let " > 0 and a box I D

Qn
jD1 Ij � Œ0; 1/

n be given. For each
j 2 ¹1; : : : ; nº, let �Ij W R! ¹0; 1º be the 1-periodic extension of the characteristic
function of Ij in Œ0; 1/, and define �I W Rn ! ¹0; 1º by �I .y/ D

Qn
jD1 �Ij .yj /.

Thus,

vol1
�®
t 2 Œ0; T � W

®
 .x; t/

¯
2 I

¯�
D

Z T

0

�I ı .t/dt:

Let " > 0, and fix ı 2 .0; 1�n sufficiently small so that 1 � .1 � ı/n < "
4

. For each
j 2 ¹1; : : : ; nº, fix 1-periodic continuous functions pj WR! Œ0; 1� and qj WR! Œ0; 1�

such that pj .t/� �Ij .t/� qj .t/ for all t 2R and such that

vol1
�®
t 2 Œ0; 1� W pj .t/¤ �Ij .t/

¯�
� ı;

vol1
�®
t 2 Œ0; 1� W qj .t/¤ �Ij .t/

¯�
� ı:

Define p W Rn ! Œ0; 1� and q W Rn ! Œ0; 1� by p.y/ D
Qn
jD1pj .yj / and q.y/ DQn

jD1 qj .yj /. Since p.y/� �I .y/� q.y/ for all y 2Rn, we have, for all x 2X ,
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1

T

Z T

0

p ı .x; t/dt �
1

T

Z T

0

�I ı .x; t/dt �
1

T

Z T

0

q ı .x; t/dt: (58)

It now suffices to show that there exists T0 > 0 such that the lower and upper bounds
in (58) are within " of voln.I / for all x 2X and T � T0. The computations involving
the lower bound and the upper bound are identical, so we only show the computation
with the lower bound.

Fix � 2 .0; 1�n sufficiently small so that, for all y; z 2 Œ�2; 2�n, if jyj �zj j< � for
all j 2 ¹1; : : : ; nº, then j

Qn
jD1 yj �

Qn
jD1 zj j <

"
4

. By a Weierstrass approximation
theorem, for each j 2 ¹1; : : : ; nº we may fix a trigonometric polynomial

Pj .t/D

NjX
˛D�Nj

cj;˛e2� i˛t

(where Nj 2N and cj;˛ 2C for each ˛) such thatˇ̌
pj .t/�Pj .t/

ˇ̌
� � (59)

for all t 2 R. Define P W Rn ! C by P.y/ D
Qn
jD1Pj .yj /. Since voln.I / DR

Œ0;1�n �I .y/dy, we haveˇ̌̌ 1
T

Z T

0

p ı .x; t/dt � voln.I /
ˇ̌̌

�
ˇ̌̌ 1
T

Z T

0

�
p ı .x; t/�P ı .x; t/

�
dt
ˇ̌̌

(*)

C
ˇ̌̌ 1
T

Z T

0

P ı .x; t/dt �
Z
Œ0;1�n

P.y/dy
ˇ̌̌

(**)

C
ˇ̌̌Z
Œ0;1�n

�
P.y/� p.y/

�
dy
ˇ̌̌

(***)

C
ˇ̌̌Z
Œ0;1�n

�
p.y/� �I .y/

�
dy
ˇ̌̌
: (****) (60)

Note that jpj .t/j � 1 and jPj .t/j � jpj .t/j C jPj .t/ � pj .t/j � 1C � � 2 for all
j 2 ¹1; : : : ; nº and t 2R, so by our choice of �, (59) implies that jp.y/�P.y/j � "

4

for all y 2 Rn. Therefore, the terms (*) and (***) in (60) are both bounded above by
"
4

. And since

n\
jD1

®
y 2 Œ0; 1�n W pj .yj /D �Ij .yj /

¯
�
®
y 2 Œ0; 1�n W p.y/D �I .y/

¯
and
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voln
� n\
jD1

®
y 2 Œ0; 1�n W pj .yj /D �Ij .yj /

¯�
� .1� ı/n;

it follows that

voln
�®
y 2 Œ0; 1�n W p.y/¤ �I .y/

¯�
� 1� .1� ı/n �

"

4
;

so the term (****) in (60) is also bounded above by "
4

. So to finish, we need to show
that there exists T0 > 0 such that the term (**) in (60) is also bounded above by "

4
for

all x 2X and all T � T0.
We have

P.y/D

nY
jD1

� NjX
˛jD�Nj

cj;˛j e2� i˛jyj
�
D

X
˛2Zn\Œ�N;N�

c˛e2� i˛�y ;

where N D .N1; : : : ;Nn/, Œ�N;N � D
Qn
jD1Œ�Nj ;Nj �, c˛ D

Qn
jD1 cj;˛j for ˛ D

.˛1; : : : ; ˛n/, and ˛ � y D
Pn
jD1 ˛jyj . Thus,

P ı .x; t/D
X

˛2Zn\Œ�N;N�

c˛e2� i˛� .x;t/:

Observe that

1

T

Z T

0

c0 dt �
Z
Œ0;1�n

c0 ds D c0 � c0 D 0 and that
Z
Œ0;1�n

c˛e2� i˛�s ds D 0

for all nonzero ˛ 2 Zn \ Œ�N;N �. Therefore, the term (**) equalsˇ̌̌ X
˛2.Znn¹0º/\Œ�N;N�

c˛

T

Z T

0

e2� i˛� .x;t/ dt
ˇ̌̌
:

Using the notation Jk from Remark 8.8, for each nonzero ˛ 2 Zn \ Œ�N;N � let

�˛;k.x/D
X
j2Jk

˛jgj .x/ for each k 2 ¹1; : : : ; �º;

d.˛/Dmax
®
k 2 ¹1; : : : ; �º W ˛j ¤ 0 for some j 2 Jk

¯
;

and observe that

˛ � .x; t/D

d.˛/X
kD1

�˛;k.x/t
k :
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The set X is compact, the functions �˛;1; : : : ; �˛;d.˛/ are continuous on X , and by
Remark 8.8, �˛;d.˛/ has no zero in X because t 7! 1.x; t/; : : : ; t 7! n.x; t/ are lin-
early independent over Q for each x 2X . Therefore, j�˛;1j; : : : ; j�˛;d.˛/j are bounded
above, and j�˛;d.˛/j is bounded below by a positive constant. We may apply
Lemma 8.6 to fix T0 > 0 such that, for all x 2X and T � T0, the term (**) is bounded
above by "

4
.

Let us fix the notation in view of Lemma 8.9. For this consider a cell

AD
®
.x; t/ W x 2…m.A/; t > a.x/

¯
;

where …m.A/ is connected and open in Rm. Define f WA!C by

f .x; t/D
X
j2J

fj .x/e
i�j .x;t/;

where J is a nonempty finite index set, .fj /j2J is a family of analytic functions
in C exp.…m.A//, .�j /j2J is a family of distinct functions on …m.A/ � R that are
polynomials in t with analytic coefficients in S.…m.A//, and �j .x; 0/ D 0 for all
j 2 J and x 2…m.A/.

Lemma 8.9 below is the parametric analogue of the presentation of the function
f .t/ in Remark 6.4 as a nonconstant Laurent polynomial in e2� iep1 ; : : : ; e2� iep` , where
the polynomial map .ep1.t/; : : : ;ep`.t// is c.u.d. mod 1. Here in the parametric case it
is technically more convenient to present f .x; t/ as a nonconstant Laurent polynomial
(with coefficient functions in the parameter x) in e2� i 1.x;t/; : : : ; e2� i n.x;t/, where
the map . 1.x; t/; : : : ; n.x; t// is a monomial map in t that is c.u.d. mod 1 on certain
compact sets of …m.A/.

LEMMA 8.9
With the notation just fixed above, we may express f as a composition

f .x; t/D F
�
x; .x; t/

�
on A, where for some n 2N,  D . 1; : : : ; n/ is a monomial map in t with analytic
coefficient functions in S.…m.A// and F.x; z1; : : : ; zn/ is a Laurent polynomial in
the variables e2� iz1 ; : : : ; e2� izn with coefficients fj .x/, j 2 J . If J is a singleton
¹j0º and if �j0 D 0, then nD 0 and F.x/D fj0.x/. Otherwise we have n > 0 and
(1) there exists a set B �…m.A/ such that volm.…m.A/ n B/D 0 and, for any

x 2B , z 7! F.x; z/ is nonconstant,
(2) for any open set ��…m.A/ and any real number � < volm.�/, there exists

a real number T0 and a compact setK ��\B such thatK� ŒT0;C1/�A,
volm.K/� �, and  �K � ŒT0;C1/ is c.u.d. mod 1 on K .
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Proof
Since the functions �j , j 2 J , are distinct, it is only possible to have �j D 0 for all
j 2 J when J is a singleton ¹j0º, and in this case we have f .x; t/D fj0.x/. We may
now assume that �j ¤ 0 for some j 2 J . In this case, since �j .x; 0/D 0 for all j 2 J
and all x 2…m.A/,

d WDmax¹deg�j W j 2 J º

is a positive integer. For each j 2 J , write

�j .x; t/D

dX
kD1

�j;k.x/t
k

with �j;k 2 S.…m.A//. For each k 2 ¹1; : : : ; dº, fix k � J such that .�;k/2�k is
a basis over Q of the span over Q of the family .�j;k/j2J (as functions of x), and let

 D
®
.�; k/ W k 2 ¹1; : : : ; dº; � 2 k

¯
:

We may fix a positive integer � such that, for each .j; k/ 2 J � ¹1; : : : ; dº,

�j;k D
X
2�k

˛j I;k

�
�;k

for a unique tuple of integers .˛j I;k/2�k . With this notation we have

f .x; t/D
X
j2J

fj .x/e
i
Pd
kD1 �j;k.x/t

k

D
X
j2J

fj .x/e
i
Pd
kD1

P
�2�k

˛j I�;k
� ��;k.x/t

k

D
X
j2J

fj .x/
Y

.;k/2�

.e2� i �;k.x//˛j I�;k D F
�
x;
�
 ;k.x/

�
.;k/2�

�
;

where for each .�; k/ 2  ,  ;k.x; t/D
��;k.x/t

k

2�	
and

F
�
x; .z;k/.;k/2�

�
D
X
j2J

fj .x/
Y

.;k/2�

.e2� iz�;k /˛j I�;k :

For each j 2 J , fj is a nonzero analytic function on the connected and open set
…m.A/, so the set

U WD
®
x 2…m.A/ W fj .x/¤ 0 for all j 2 J

¯
satisfies vol.…m.A/ nU /D 0. The fact that �j , j 2 J , are distinct functions implies
that ..˛j I;k/.;k/2�/j2J is a family of distinct tuples in Z� . As a consequence, for
each x 2 U the trigonometric polynomial z 7! F.x; z/ is nonconstant.
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Observe that, since .�;k/2�k is independent over Q (as functions of x), for
each k 2 ¹1; : : : ; dº and nonzero tuple c D .c / 2 Z�k ,

P
2�k

c�;k is a nonzero
analytic function on …m.A/, so the set ¹x 2 U W

P
2�k

c ;k.x/D 0º cannot have
a positive measure, and the set

B WDU n
� d[
kD1

[
c2Z�k n¹0º

°
x 2 U W

X
2�k

c�;k.x/D 0
±�

satisfies volm.…m.A/ nB/D 0 as well. This gives (1), since B � U .
On the other hand, from the definition of B we see that, for each k 2 ¹1; : : : ; dº

and for each x 2 B , the family of numbers .�;k.x//.;k/2� is linearly independent
over Q, and by Remark 8.8, for each x 2 B the family of functions .t 7!

 ;k.x; t//.;k/2� is linearly independent over Q. Given an open set � � …m.A/

and any positive real number � with � < volm.�/D volm.�\B/, the inner regular-
ity of the Lebesgue measure shows that we may fix a compact set K �� \ B with
volm.K/� �. Since K is compact and a.x/ is continuous, we may fix T0 sufficiently
large so that K � ŒT0;C1/ � A. Proposition 8.7 then shows that the restriction of
 WD . ;k/.;k/2� to K � ŒT0;C1/ is c.u.d. mod 1 on K , which completes the
proof of (2).

The following Lemma 8.10 is the parametric version of Proposition 6.5(1). It will
be used in the proof of Proposition 8.2.

LEMMA 8.10
Consider f .x; t/ D F.x; .x; t// as given in Lemma 8.9, with z 7! F.x; z/ non-
constant for some x 2 …m.A/. Then there exist " > 0, ı > 0, a strictly increasing
sequence .tj /j2N in R diverging to C1, a compact set K � X , and a sequence
.Xj /j2N of Lebesgue measurable subsets of K � …m.A/, with, for any j 2 N,
volm.Xj / � ı, X2jC1 � X2j , such that, for all j 2 N, for all x0 2 X2j and x1 2
X2jC1, ˇ̌

f .x0; t2j /
ˇ̌
� " and

ˇ̌
f .x0; t2j /� f .x1; t2jC1/

ˇ̌
� ":

Proof
Since z 7! F.x; z/ is nonconstant and 1-periodic in each of the components of z D
.z1; : : : ; zn/, one may find v0; v1 2 Œ0; 1/n such that f .x; v0/ ¤ f .x; v1/, and thus,
assuming for instance that f .x; v0/ ¤ 0, one may fix " > 0, an open subset U of
…m.A/ containing x, and boxes I0; I1 � Œ0; 1/n, respectively, containing v0; v1 such
that dist.F.U � I0/; 0/� " and dist.F.U � I0/;F .U � I1//� ".

By Lemma 8.9(2) we may fix a compact set K � U and T0 2 R such that
volm.K/ > 0, K � ŒT0;C1/ � A, and  � K � ŒT0;C1/ is c.u.d. mod 1 on K .
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Define

ıD
1

2
volm.K/voln.I0/min

°
1;
1

2
voln.I1/

±
:

Remark 8.5 shows that we may fix k0 2 N, 2k0 > T0, such that, for all k � k0, all
i 2 ¹0; 1º, and all x 2K ,

vol1
�®
t 2 Œ2k; 2kC1/ W

®
 .x; t/

¯
2 Ii

¯�
� 2k�1 voln.Ii /:

Let us now construct t0; t1 and the corresponding sets X1 � X0 � K . For this we
consider

E0 WD
®
.x; t/ 2K � Œ2k0 ; 2k0C1/ W

®
 .x; t/

¯
2 I0

¯
:

By integrating first in the variable t and then in the variable x, Fubini’s theorem gives

volmC1.E0/D
Z
x2K

vol1
�®
t W .x; t/ 2E0

¯�
dx � volm.K/2

k0�1 voln.I0/:

But, by integrating first in the variable x and then in the variable t , Fubini’s theorem
also gives

volmC1.E0/D
Z 2k0C1

2k0
volm

�®
x W .x; t/ 2E0

¯�
dt:

It follows that we may certainly choose t0 2 Œ2k0 ; 2k0C1/ to define

X0 D
®
x 2K W .x; t0/ 2E0

¯
so that

volm.X0/�
volmC1.E0/

2k0
�
1

2
volm.K/voln.I0/� ı: (61)

Now denote k0 C 1 by k1. Then 2k1 > t0. We apply the same construction as above
but with I1 instead of I0, Œ2k1 ; 2k1C1/ instead of Œ2k0 ; 2k0C1/, and X0 instead of K .
For this we define

E1 D
®
.x; t/ 2X0 � Œ2

k1 ; 2k1C1/ W
®
 .x; t/

¯
2 I1

¯
;

and then we choose, with the same argument as above using Fubini’s theorem on E1,
some t1 2 Œ2k1 ; 2k1C1/ and define

X1 D
®
x 2X0 W .x; t1/ 2E1

¯
so that, in conjunction with (61),
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volm.X1/�
1

2
volm.X0/voln.I1/�

1

4
volm.K/voln.I0/voln.I1/� ı:

For j � 1, the pairs .t2j ; t2jC1/ and .X2j ;X2jC1/ are defined in the same way, t2j
being constructed from t2j�1,X2j fromK , t2jC1 from t2j , andX2jC1 fromX2j .

We can finally prove Proposition 8.2.

Proof of Proposition 8.2
Let p 2 Œ1;C1� and f 2 C exp.X � R/ for a subanalytic set X � Rm, and suppose
that .fy/y2R is Cauchy inLp.X/ as y!C1. SinceLp.X/ is complete, there exists
a function h 2Lp.X/ such that

lim
y!C1

kfy � hkp D 0; (62)

and there exists a sequence .yj /j2N in R tending to C1 such that

lim
j!C1

f .x;yj /D h.x/ for almost all x 2X: (63)

(See for instance Rudin [26, Theorems 3.11 and 3.12].)
Apply Theorem 5.2 to f .x;y/ with respect to y. Let A be the collection of cells

A given by the preparation that are open in RmC1 and of the form

AD
®
.x; y/ W x 2…m.A/; y > a.x/

¯
;

and put X0 D
S
¹…m.A/ W A 2Aº. Since volm.X nX0/D 0, it suffices to focus on

one A 2A and prove that the conclusion of the theorem holds for f �A. Write f as
a finite sum

f .x;y/D
X
j2J

Tj .x; y/

on A with each term of the form Tj .x; y/ D yrj .logy/sj gj .x; y/ specified in
Remark 5.3; thus, gj 2 C exp.A/ with jgj .x; y/j � �j .x/ on A for some continuous
function �j W…m.A/! Œ0;C1/, and gj .x; y/D fj .x/ei�j .x;y/ when rj ��1, with
�j .x; y/ distinct polynomials in y1=d for some integer d � 0 such that �j .x; 0/D 0
for all x 2…m.A/. Each function fj can be taken to be analytic on A by Remark 5.8
and not identically zero, and …m.A/ is connected since A is a subanalytic cell. We
claim that there exists g 2 C exp.…m.A// such that limy!C1 f .x;y/D g.x/ for all
x 2…m.A/. This claim and (63) imply that g.x/D h.x/ for almost all x 2…m.A/,
and hence limy!C1 kfy �…m.A/ � gkp D 0 by (62). So we will be done once we
prove the claim.
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LetE D ¹.rj ; sj / W j 2 J º, and for each .r; s/ 2E let J.r;s/ D ¹j 2 J W .rj ; sj /D
.r; s/º. Thus,

f .x;y/D
X

.r;s/2E

yr.logy/sS.r;s/.x; y/; (64)

where for each .r; s/ 2E ,

S.r;s/.x; y/D
X

j2J.r;s/

gj .x; y/: (65)

For each .r; s/ 2E , define �.r;s/ W…m.A/! Œ0;C1/ by �.r;s/.x/D
P
j2J.r;s/

�j .x/,
and observe that �.r;s/ is continuous and that jS.r;s/.x; y/j � �.r;s/.x/ on A.

Let .r; s/ be the lexicographic maximum element of E . If r < 0, then
limy!C1 f .x;y/ D 0 for all x 2…m.A/, and we are done. If r D s D 0 and J is
a singleton, say, J D ¹j0º, and �j0 D 0, then

f .x;y/D fj0.x/C
X

.r;s/2En¹.0;0/º

yr .logy/sgj .x; y/;

with r < 0 for all .r; s/ 2 E n ¹.0; 0/º, so limy!C1 f .x;y/ D fj0.x/ on …m.A/,
and we are also done. The two remaining cases are when r > 0 or s > 0, or when
r D s D 0 and �j ¤ 0 for some j 2 J.0;0/. We will complete the proof by showing
that these two remaining cases are impossible.

We may assume that r � 0, since this is a common assumption of the two remain-
ing cases. Note that

S.r;s/.x; y
d /D

X
j2J.r;s/

fj .x/e
i�j .x;y

d /

is of the form hypothesized in Lemma 8.9. Therefore, we can apply Lemma 8.10 and
find " > 0, ı > 0, a compact set K �…m.A/, a strictly increasing sequence .yj /j2N
in .1;C1/ tending to C1 with K � Œy0;C1/ � A, and a sequence .Xj /j2N of
Lebesgue measurable subsets of K such that, for all j 2 N, volm.Xj /� ı, X2jC1 �
X2j �K , and

8x 2X2jC1;
ˇ̌
S.r;s/.x; y2j /

ˇ̌
� 2";ˇ̌

S.r;s/.x; y2jC1/� S.r;s/.x; y2j /
ˇ̌
� 3":

The set K is compact, each function �.r;s/ is continuous, and it holds that
limy!C1 y

r�r.logy/s�s D 0 for all .r; s/ 2 E n ¹.r; s/º, so by replacing .yj /j2N
with a tail of the sequence, we may assume that, for all y � y0,

max
° X
.r;s/2En¹.r;s/º

yr�r.logy/s�s�.r;s/.x/ W x 2K
±
� ":
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Observe that, for all j 2N and x 2X2j ,ˇ̌̌
S.r;s/.x; y2j /C

X
.r;s/2En¹.r;s/º

yr�r2j .logy2j /
s�sS.r;s/.x; y2j /

ˇ̌̌
� 2"� "D ";

so ˇ̌
f .x;y2j /

ˇ̌
D yr2j .logy2j /

s
ˇ̌̌
S.r;s/.x; y2j /

C
X

.r;s/2En¹.r;s/º

yr�r2j .logy2j /
s�sS.r;s/.x; y2j /

ˇ̌̌
� yr2j .logy2j /

s":

In consequence, if r > 0 or s > 0, then

kfy2j � hkp � kfy2j kp � khkp � y
r
2j .logy2j /

s"ı � khkp �!
n!C1

C1;

which contradicts (62). So we may suppose that r D s D 0 and �j ¤ 0 for some
j 2 J.0;0/. Thus, on A

f .x;y/D S.0;0/.x; y/C
X

.r;s/2En¹.0;0/º

yr .logy/sS.r;s/.x; y/:

It follows that, for all j 2N and x 2X2jC1,ˇ̌
f .x;y2j /� f .x;y2jC1/

ˇ̌
�
ˇ̌
S.x;y2j /� S.x;y2jC1/

ˇ̌
�
ˇ̌̌ X
.r;s/2En¹.0;0/º

yr2j .logy2j /
sS.r;s/.x; y2j /

ˇ̌̌
�
ˇ̌̌ X
.r;s/2En¹.0;0/º

yr2jC1.logy2jC1/
sS.r;s/.x; y2jC1/

ˇ̌̌
� 3"� "� "D ":

Finally we obtain, for all j 2N,

kf2j � fy2jC1kp � "ı;

which contradicts the fact that .fy/y2R is Cauchy in Lp.X/ as y!C1.
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